Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема лорда Кельвина

Поверхности равного действия. Теорема лорда Кельвина.  [c.477]

Изменение кинетической анергии материальной частицы за время удара. Согласно теореме лорда Кельвина (см. формулу (18.36) на стр. 1б4 приращение кинетической энергии Т частицы за время первого и второго актов удара может быть выражено следующим образом  [c.615]

Это равенство представляет собой распространение на систему частиц теоремы лорда Кельвина [см. формулу (18.36) на стр. 164].  [c.633]

Теорема лорда Кельвина. Задачу об ударе системы, или о действии импульсов на систему, можно свести к задаче о разыскании минимума некоторой функции. Пусть связи рассматриваемой системы удовлетворяют условиям (56.56) и пусть на систему, находящуюся в покое [а покой является возможным кинематическим состоянием системы ( 205)], подействовали некоторые импульсы F . Так как все начальные скорости равны нулю, то, применив формулу (56,58) к моменту окончания действия импульсов, мы найдём  [c.633]


Следуя лорду Кельвину, будем называть элементы антисимметричной матрицы коэффициентов гироскопическими членами. Эти члены характеризуют внутренние гирационные свойства механической системы (в нашем случае вращение земного шара) последние при рассмотрении проблемы не учитываются явно (игнорируются), а принимаются во внимание при выборе системы координат (в нашем случае ( ). Такого рода гироскопические члены играют важную роль в общих теоремах об устойчивости движений и состояний равновесия.  [c.226]

Основные теоремы. Задача об устойчивости имеет значение ие только при исследовании положений равновесия, но и при исследовании движения механических систем. Она возникает в связи с необходимостью знать, как изменится движение нри отклонении начальных условий от заданных. Исследованием вопросов устойчивости равновесия занимался еще Аристотель. Лагранж сформулировал известную теорему об устойчивости равновесия и рассмотрел малые возмущенные движения в окрестности положения равновесия системы. Развитием учения об устойчивости равновесия и движения занимались такие крупнейшие ученые, как П. Тэт (1831— 1901), Томсон (лорд Кельвин) (1824—1907), Э. Раус, А. Пуанкаре,  [c.571]

Отношение этой силы к массе частицы называется напряжением поля в рассматриваемой точке. Если масса частицы равна единице, то напряжение поля численно равно модулю силы, т. е. равно производной от силовой функции по направлению положительной нормали к соответственной поверхности уровня. Вообще производная от силовой функции по какому-либо направлению равна проекции на это направление силы, с которой действует поле на массу, находящуюся в рассмат- риваемой точке поля. Когда построено семейство поверхностей уровня, то по теореме лорда Кельвина напряжение поля там больше, где поверхности уровня гуще, теснее расположены друг относительно друг а. Кривые, ортогональные к поверхностям уровня, носят в лyчaJ2 силового поля название с и л о в ы-к линий, так как, по предыдущему, касательные к ним определяют собой направление силы или напряй ения поля.  [c.172]

Изложенная нами геометрическая интерпретация равенств (44.5) носит название теоремы лорда Кельвина (Kelvin). Она может быть распространена на произвольное число координат, если ввести в рассмотрение соответствующее многомерное пространство. Пусть положение какой-либо консервативной системы определяется s координатами составим характеристическую функцию 5 для движения этой системы. Функция S служит полным интегралом уравнения (42.40) на стр. 457 и содержит в себе S—1 произвольных гюстоянных й,, s-v кроме аддитивной. Система равенств  [c.478]

Теорема Бертрана. Теорема лорда Кельвина сводит задачу о действии ударных импульсов на материальную систему к рассмотрению минимума некоторой функции. Подобным образом теорема Бертрана(Bertrand) показывает, что задача о действии ударных импульсов сил на систему совпадаег с задачей о нахождении некоторого максимума.  [c.635]

Однако на этой картине оставалось несколько темных пятен. Лорд Кельвин в 1900 г. сказал, что на горизонте физики собираются две угрожающие темные тучи. Одной из них являлись трудности, возникшие после знаменитого опыта Майкельсона и Морлея, результаты которого казались несовместимыми с существовавшими тогда представлениями. Второй тучей был крах методов статистической механики в области теории излучения черного тела теорема равномерного распределения энергии — неизбежное следствие статистической механики — действительно приводила к определенному распределению энергии между различными частотами в излучении, находящемся в равновесии. Однако закон этого распределения (закон Рэлея—Джинса) находится в грубом противоречии с опытом и является почти абсурдным, так как из него вытекает бесконечное значение полной плотности энергии, что, очевидно, не имеет никакого физического смысла.  [c.642]


Термодинамич. шкала Т. была введена У. Томсоном [W. Thomson (лорд Кельвин, Kelvin)] на основе Карно теоремы. Для этой же цели можно воспользоваться лю-бы.м точным термодинамич. соотношением, в к-рос, кроме Т., входят только экспериментально измеримые величины. Напр.,  [c.62]

Теорема В. Томсона. В. Томсон (лорд Кельвин) доказал, что живая сила несжимаемой жидкости, движущейся в односвязном объеме с потенциалом скоростей, меньще живой силы во всяком другом движении, при котором па границах объема жидкость обладает движением, одинаковым с безвихревым, внутри же обладает вихрями. В самом деле, пусть живая сила в безвихревом движении будет Т, а во всяком другом — Т, при условии, что на границах объема нормальная составляющая скорости V последнего движения одинакова с нормальной составляющей скорости V безвихревого движения  [c.122]

Вопрос о влиянии гироскопических и диссипативных сил на устойчивость положения равновесия консервативной системы был поставлен, как известно, В. Томсоном (лордом Кельвином), установившим ряд теорем. Эти теоремы Кельвина впервые были строго даказаны приь1енением функций Ляпунова в весьма изящной форме Четаевым (1946), обратившим при этом внимание на принципиальную и прикладную важность введенных Кельвином понятий вековой и временной устойчивости и возможность гироскопической стабилизации. Впоследствии, например, Четаев (1956) показал, что равносторонний треугольник в плоской задаче трех тел неустойчив при постоянстве угловой скорости со вращения луча соединяющего какие-либо два тела из трех, и его нельзя стабилизировать добавлением каких-либо гироскопических сил. В случае движения относительно центра масс системы, когда onst, вообще, лапласов треугольник не имеет вековой устойчивости, но может иметь гироскопическую устойчивость.  [c.38]

Некоторые современники Гельмгольца тут же ухватились за сокровища, содержавшиеся в его статье. Уильям Томсон (впоследствии лорд Кельвин), близкий друг Гельмгольца, сформулировал следствие, имеющее фундаментально важное значение его знаменитая теорема является отправной точкой систематического представления в большинстве современных работ. Он также увлекся проблемой конфигураций вихрей, которые могли бы двигаться без изменения формы (см. [18]). С одной стороны, это привело к ранним вкладам, сделанным Тэтом в топологическую теорию узлов, а с другой — к давным-давно опровергнутой теории вихревых атомов . Дж. Дж. Томсон, открывший электрон, в 1883 году напишет эссе (за которое ему присудят Премию Адамса) о вихревых кольцах, содержащее анализ условий устойчивости неподвижных конфигураций а тогда он применил эти результаты к вихревой модели атома Кельвина. Позднее Джеймс Клерк Максвелл рассмотрит динамику молекулярных вихрей в связи со своей плодотворной работой по электромагнетизму и кинетической теории.  [c.684]


Смотреть страницы где упоминается термин Теорема лорда Кельвина : [c.171]    [c.164]    [c.58]    [c.167]    [c.8]    [c.210]    [c.63]    [c.271]    [c.868]   
Смотреть главы в:

Теоретическая механика  -> Теорема лорда Кельвина



ПОИСК



Кельвин

Лорд Кельвин

Поверхности равного действия. Теорема лорда Кельвина

Теорема Кельвина



© 2025 Mash-xxl.info Реклама на сайте