Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДЕФОРМИРОВАНИЕ МАТЕРИАЛА В ПЛОСКИХ ВОЛНАХ НАГРУЗКИ

В монографии представлены результаты исследования механического поведения конструкционных материалов под действием импульсных нагрузок ударного и взрывного характера. Рассмотрена связь процессов нагружения и деформирования материала при одноосном напряженном состоянии. Описаны оригинальные методики и средства квазистатических испытаний на растяжение со скоростями до 950 м/с. Приведены результаты испытаний ряда металлических материалов и реологическая модель их механического поведения учитывающая влияние на сопротивление скорости деформации. Исследовано упруго-пластическое деформирование и разрушение материала в плоских волнах нагрузки. Описаны новые методики и изложены результаты экспериментальных исследований зависимости характеристик ударной сжимаемости н сопротивления пластическому сдвигу за фронтом плоской волны от ее интенсивности, связи силовых и временных характеристик откольной прочности.  [c.2]


ДЕФОРМИРОВАНИЕ МАТЕРИАЛА В ПЛОСКИХ ВОЛНАХ НАГРУЗКИ  [c.141]

Характер деформирования материала в плоской волне нагрузки определяется ее интенсивностью. При низкой интенсивности, Не превышающей предел упругости по материалу распространяется упруго-пластическая волна [298—300, 375, 385] при высокой интенсивности возрастание объемной жесткости материала приводит к формированию ударной волны со скачкообразным изменением параметров на ее фронте. На фронте ударной волны достигается наиболее высокая скорость пластической деформации материала.  [c.143]

Использование акустического приближения, основанного на упругой или гидродинамической модели поведения материала в плоской волне нагрузки, для расчета по экспериментальным данным силовых и временных параметров откольной прочности приводит к значительной погрешности, так как не учитывается действительное реологическое поведение материала под нагрузкой. Метод определения откольной прочности металлических конструкционных материалов, представленный в параграфе 2 седьмой главы, не учитывает влияния эффектов вязкости и зависимости сопротивления сдвигу от уровня средних напряжений при упруго-пластическом деформировании в волнах нагрузки. Рассмотрим эти эффекты.  [c.228]

Экспериментальные данные о влиянии скорости деформации на сопротивление деформированию в волнах разгрузки, проявляющейся в связи силовых и временных параметров откольной прочности материала, позволяют расширить диапазон скоростей деформирования. Для анализа результатов необходимо принять определенную модель процесса разрушения с соответствующими критериями разрушения, позволяющую связать влияние скорости деформации на сопротивление деформации при одноосном напряженном состоянии в испытаниях на растяжение — сжатие (или двухосном напряженном состоянии в испытаниях на чистый сдвиг) с влиянием скорости нагружения в области растягивающих напряжений на откольную прочность при одноосной деформации в плоских волнах нагрузки.  [c.242]

Зависимость сопротивления материала пластической деформации от скорости деформирования приводит к конечному времени установления равновесного состояния за фронтом плоских упруго-пластических волн нагрузки. В связи с этим их распространение в течение времени, сравнимого с временем релаксации напряжений, существенно зависит от скорости роста нагрузки, а напряжения в волне соответствуют неравновесному состоянию материала при прохождении фронта волны.  [c.155]

Упруго-пластический характер деформирования материала иод нагрузкой проявляется при распространении волн [391—394]. Так, фронт упруго-пластической волны имеет сложную конфигурацию впереди с упругой скоростью распространяется упругий предвестник, а фронт пластических деформаций следует за ним с несколько меньшей скоростью [71, 108, 185, 314, 357]. На фронте упругого предвестника пластические деформации несущественны и его амплитуда сТгт, характеризующая предел упругости при одноосной деформации в плоской волне нагрузки, связана с пределом текучести при одноосном напряженном состоянии  [c.204]

Для обоснованного выбора модели проведем анализ процесса деформирования материала в плоских волнах нагрузки, заканчивающегося откольиым разрушением. Материал в плоскости откола подвергается сжатию в прямой волне нагрузки до максимального давления (область / на рис. 122, а), после чего разгружается до максимальной величины растягивающих напряжений в результате взаимодействия волн разгрузки 5+ и S . Принимаем, что разрушение пластичного материала является результатом накопления повреждений в процессе пластического деформирования под действием теизора-девиатора напряжений с наложением шарового тензора растягивающих напряжений и последующего развития и слияния микротрещин в поврежденном материале.  [c.243]


Зависимость сопротивления сдвигу от уровня всестороннего давления (величины средних сжимающих напряжений), следующая по результатам работ [14, 187] и обсуждаемая в работе [188], влияет на ход кривой сжатия при нагрузке и разгрузке. Однако при условии, что упругий участок на кривой разгрузки не снижает давление до величины ниже нуля при экспериментальной регистрации движения свободной поверхности (или давления, соответствующего адиабате сжатия мягкого материала при регистрации давления на границе образца с мягким материалом), определение величины растягивающих напряжений как точки пересечения лучей, исходящих из максимума (точка 1) и минимума (точка 2) скоростей (давлений), автоматически учитывает зависимость сопротивления сдвигу от давления, поскольку влияние последнего сказывается только на положении точек 1 я 2 (штриховая диаграмма на рис. 117, а). Угловой коэффициент луча 2К при этом определяется жесткостью упруго-пластического сжатия в области отрицательных давлений. Из-за отсутствия в настоящее время данных о жесткости материала при одноосном деформировании в области растягивающей нагрузки приходится либо использовать жесткость, определенную при малых растягивающих нагрузках, либо принимать допустимым использование одного закона об1ъемного сжатия в плоских волнах для области растягивающих и сжимающих нагрузок. Следует отметить, что, по данным работы [21], давления до 100-10 кгс/см2 в стали 20 и алюминиевом сплаве В95 не оказывают существенного влияния на сопротивление сдвигу.  [c.230]


Смотреть страницы где упоминается термин ДЕФОРМИРОВАНИЕ МАТЕРИАЛА В ПЛОСКИХ ВОЛНАХ НАГРУЗКИ : [c.4]    [c.14]    [c.162]    [c.108]   
Смотреть главы в:

Упруго-пластичное деформирование материалов под действием импульсных нагрузок  -> ДЕФОРМИРОВАНИЕ МАТЕРИАЛА В ПЛОСКИХ ВОЛНАХ НАГРУЗКИ



ПОИСК



Волна нагрузки

Волна плоская

Волны материи

Материал я а н а. . — Нагрузки

Материалы - Деформирование



© 2025 Mash-xxl.info Реклама на сайте