Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ надежности сложных систем

Элементы сложной системы. При анализе надежности сложных систем их разбивают на элементы (звенья) с тем, чтобы вначале рассмотреть параметры и характеристики элементов, а затем оценить работоспособность всей системы.  [c.177]

О надежности сложных систем. Анализ надежности сложных систем имеет свои специфические особенности. Прежде всего может показаться непомерно трудной задачей оценить надежность такого сложного изделия, которое имеет десятки тысяч деталей, изменение состояния каждой из которых так или иначе влияет на его работоспособность. Однако это не так. Влияние различных отказов и снижение работоспособности элементов изделия по-разному скажутся на надежности всей системы.  [c.180]


Применительно к анализу надежности сложных систем ( 4.3) рассматривается оценка их эффективности (расчетом соответствующих показателей). Кроме того, с учетом существенной специфики оценки показателей, характеризующих такие системные свойства, как живучесть и безопасность, описание соответствующих методов выделено в отдельные разделы.  [c.14]

АНАЛИЗ НАДЕЖНОСТИ СЛОЖНЫХ СИСТЕМ  [c.224]

Применение экспоненциального закона, как известно, резко упрощает все расчеты, особенно при анализе надежности сложных систем.  [c.39]

Другая особенность оценки надежности сложных систем заключается в трудности, а иногда и невозможности применения к системе в целом статистических методов анализа.  [c.181]

Обычно прогнозирование, связанное с применением математического аппарата (элементы численного анализа и теории случайных функций), называется аналитическим [27]. Специфика прогнозирования надежности заключается в том, что при оценке вероятности безотказной работы Р (/) эту функцию в общем случае нельзя экстраполировать. Если она определена на каком-то участке, то за его пределами ничего о функции Р ( сказать нельзя [43]. Поэтому основным методом для прогнозирования надежности сложных систем является оценка изменения его выходных параметров во времени при различных входных данных, на основании чего можно сделать вывод о показателях надежности при различных возможных ситуациях и методах эксплуатации данного изделия.  [c.209]

Экспериментальная оценка скорости изменения выходных параметров, как это было сказано выше, — наиболее достоверный в настоящее время путь для расчета надежности сложных систем. Однако это исследование должно сопровождаться теоретическим анализом основных зависимостей аналогично рассмотренной выше методике. В этом случае можно получить данные не только об изучаемом конкретном экземпляре изделия, но и сделать выводы о работоспособности рассматриваемых систем. Учитывая малую скорость протекания процессов изнашивания, испытание целесообразно дополнять математическим моделированием процесса, которое позволит оценить работоспособность изделия при различных условиях и режимах эксплуатации, а также проверить его работоспособность при применении материалов различной износостойкости.  [c.395]

Справочник был задуман для достижения двух основных целей. Во-первых, он должен был служить обширным обобщением опыта в области надежности, систематически изложенного, с тем чтобы инженеры, ученые и руководители предприятий при минимальных затратах усилий смогли познакомиться с достижениями в области обеспечения высокой надежности сложных систем. Заранее было решено, что ни одной точке зрения не будет отдано предпочтения и что все противоречивые мнения будут изложены объективно, без каких-либо комментариев редактора. Читатель может оценить изложенный здесь опыт с точки зрения своей собственной задачи и выбрать те методы, которые, по его мнению, обеспечивают наилучшее решение. Кроме того, эта книга должна дать справочный материал всем специалистам, занимающимся вопросами надежности. В справочник включено большое число понятий, определений, примеров, таблиц, данных о надежности, статистических и математических моделей и таблиц, формул, графиков и методов анализа.  [c.15]


Анализ работоспособности сложной системы связан с изучением ее структуры и тех взаимосвязей, которые определяют ее надежное функционирование. Важную роль при этом играет выделение элементов, составляющих данную систему.  [c.177]

Совершенствование системы нормативов надежности должно опираться на сочетание исследований общих закономерностей формирования свойства надежности систем энергетики, анализа прошлого опыта работы систем и экспертных оценок [72]. Исследование закономерностей, проводимое на достаточно сложных модельных объектах, имеет целью изучение относительной силы влияния тех или иных факторов на изменения показателей надежности системы. Здесь могут быть полезны имитационные модели и методы, основанные на построении регрессионных зависимостей, с учетом экстраполяции существующих тенденций развития системы на перспективу. Анализ прошлого опыта вместе с экспертными оценками должен давать ответ на вопрос о том, насколько удовлетворительным было обеспечение потребителей в прошлом. Иными словами, неизбежно должны получить развитие методы ретроспективного анализа надежности систем энергетики. Ясно, что процесс создания нормативов в принципе итеративный, поскольку необходимы этапы оценки эффективности разрабатываемых и внедряемых норм и их корректировки с изменением внешних условий, накоплением опыта решения задач и т. д.  [c.174]

Для сложных систем ( 4.3) математический аппарат для расчета показателей надежности разработан существенно хуже, поэтому часто приходится говорить не столько о математическом аппарате, сколь ко о подходах и целесообразных процедурах анализа надежности  [c.149]

В математической теории надежности рассматриваются методы расчета и анализа, связанные с оценкой степени надежности изделий, с контролем их качества, обработкой опытных данных по надежности, выбором оптимальных решений, резервированием, оценкой происходящих процессов потери качества, анализом законов распределения показателей надежности и долговечности. В этом разделе изучаются теория вероятностей и математическая статистика, основы теории массового обслуживания, элементы теории информации, математической логики, методы оптимизации и другие применительно к задачам надежности, а также математические методы расчета надежности (имеется в виду расчет сложных систем и резервирование, контроль качества и т. д.).  [c.282]

В настоящее время значительное внимание уделяется инженерному решение задачи оценки начальной параметрической надежности отдельных злементов сложных систем. Решение этой задачи позволяет во многих случаях довольно просто переходить к следующим, более важным задачам, которые связаны с понятием случайных функций времени или с изучением влияния внешних факторов, В проведенных исследованиях анализу подлежит только безотказность элементов системы при  [c.106]

В справочнике обстоятельно рассмотрены большинство используемых в настоящее время моделей надежности. Априорному анализу надежности отводится сравнительно мало места. Тем, кому потребуется произвести расчет надежности сложных резервированных систем (невосстанавливаемых или с восстановлением) и решать специальные задачи резервирования, необходимо будет воспользоваться дополнительной литературой, указанной в конце первого тома. Для получения сведений о методах априорного анализа постепенных отказов, расчета вероятности невыхода за границы поля (объема) допусков совокупности параметров изделия, определяющих его работоспособность а заданном интервале времени, также придется обратиться к другим источникам. Нет в справочнике указаний на методы оптимального синтеза системы из ненадежных элементов, обладающей заданными показателями надежности. Наконец,  [c.9]

Системный подход является направлением методологии специального научного познания, в основе которого лежит исследование объектов как систем. Методологическая специфика системного подхода определяется ориентацией исследования на раскрытие целостности объекта и создающих ее механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину. Широкое развитие и использование системного подхода является характерной особенностью современной науки и техники. Системный подход необходим при анализе качества и, в частности, надежности самых разнообразных ПТМ,- являющихся неотъемлемой составной частью сложных автоматизированных комплексов производства в различных отраслях народного хозяйства. Изучение физических процессов, которые приводят к изменению показателей качества изделий и их элементов, наиболее полно мой<но провести лишь в рамках системного подхода при анализе системы человек изделие — среда. Необходимость системного подхода при изучении сложных систем вытекает из рассмотрения системных принципов, к которым относятся целостность, структурность, взаимозависимость системы и среды, иерархичность, множественность описания каждой системы и др.  [c.20]

Опытно-статистические методы оценки надежности проектируемых систем означают переход от качественной оценки к инженерным расчетам и количественному анализу. Они отражают современное состояние теории надежности, которая ввиду чрезвычайной сложности физических процессов, связанных с отказами, ограничивается пока изысканием методов учета отказов, без раскрытия совокупности причинных связей. По мере развития теории надежности, проникновения ее в глубь причинных связей и закономерностей опытно-статистические методы оценки ожидаемой надежности все более будут ступать место аналитическим методам, позволяющим вести расчеты на основе функциональных зависимостей показателей надежности от параметров элементов и систем, которые в общем случае имеют вероятностный характер. Такие методы более сложны, требуют глубокого изучения сущности явлений, происходящих в механизмах и устройствах при их работе, раскрытия функциональной зависимости работоспособности от конструктивных и эксплуатационных параметров, что является трудной задачей. Поэтому аналитические и экспериментальные методы целесообразно использовать прежде всего при оценке надежности наиболее ответственных механизмов, устройств и аппаратуры.  [c.125]


Выбор степени автоматизации и вида управления ТСС зависит от ряда факторов и должен определяться на основе технико-экономического анализа возможных вариантов. К основным факторам, влияющим на выбор уровня автоматизации, относятся соответствие конструкций основных и вспомогательных механизмов ТСС требованиям принятого вида управления, наличие аппаратуры автоматического управления и контроля достаточной надежности, наличие подготовленного персонала, способного эксплуатировать сложную систему управления, срок окупаемости затрат на автоматизацию, а также характер производства (единичное, серийное, массовое), величина грузопотоков, свойства грузов.  [c.8]

Экспоненциальный закон является частным случаем закона Вейбулла. Его широко применяют в теории надежности и массового обслуживания, при анализе сложных систем, прошедших период приработки, и систем, работающих под воздействием механических нагрузок, а также при анализе наработки в случае внезапных случайных отказов, происходящих из-за скрытых дефектов технологии.  [c.29]

В течение многих лет теоретические методы анализа и проектирования систем развивались без учета надежности и достоверности лежащих в основе этих методов численных процедур. Несмотря на это, применяемые алгоритмы обеспечивают удовлетворительные результаты для систем низкого порядка, особенно если использовать вычисления с двойной точностью. Однако растущий инт терес к применению теории многосвязных систем к большим и сложным системам выявил вычислительные проблемы, акцентировал внимание на необходимости иметь эффективные, надежные и устойчивые численные алгоритмы. В последние годы в области линейной алгебры были разработаны надежные и устойчивые алгоритмы. В работе [7 ] показано, что, по крайней мере, в настоящее время использование матричных моделей для описания систем чаще приводит к робастным алгоритмам, чем применение моделей 216  [c.216]

В наибольшей степени положения теории надежности сложных технических систем (в частности, ГПА) согласуются с основами теории вибрационной надежности, так как приложения по расчету случайных вибрационных процессов требуют применения методов теории надежности. Более того, оценка степени надежности узлов ГПА, испытывающих вибрации, должна быть основана на анализе случайных колебательных процессов и связанных с ними развивающихся дефектов.  [c.140]

Определение запаса надежности для каждого экземпляра сложной системы может сочетаться с ее контрольными испытаниями. Однако, если испытанию подвергаются один или небольшое число экземпляров машины из серии, то полученные значения запасов надежности будут характеризовать лишь эти экземпляры. Суждение о запасе надежности у всей генеральной совокупности изделий можно иметь или на основании расчета возможных отклонений начальных параметров или при проведении специальных испытаний для имеющихся объектов (см. ниже). Определение в результате испытания машины запаса надежности по выходным параметрам, так же как и анализ потока отказов, в первый период ее работы еще не дает возможности оценить ресурс, вероятность безотказной работы и другие основные показатели надежности. Эти испытания не характеризуют надежности отдельных узлов и систем машины в течение длительного периода эксплуатации. Они являются как бы первым предварительным этапом испытания их надежности и, как правило, базируются на обязательных для каждого готового изделия контрольных испытаниях.  [c.513]

Вторая часть (гл. 5—8) посвящена анализу вопросов развития специализированных систем энергетики на примере наиболее сложных и комплексных систем — Единой электроэнергетической системы, систем теплоснабжения и нефтегазового комплекса — с позиций как экономичности, так и надежности. Сформулированы долгосрочные направления и проблемы формирования Единой электроэнергетической системы и систем теплоснабжения. Обобщены некоторые результаты исследований по развитию нефтегазового комплекса страны, а также по планированию развития электроэнергетических систем и систем магистральных нефте- и газопроводов с учетом надежности энергоснабжения потребителей.  [c.4]

Отметим, что принцип равной надежности является весьма консервативным и предъявляет жесткие требования к показателям надежности систем безопасности, которые сложно обосновать с помощью имеющейся ограниченной статистики по отказам оборудования таких систем. Данный подход к оценке надежности систем безопасности может быть использован для сравнительного анализа различных вариантов.  [c.98]

Анализ опыта эксплуатации авиационных гидравлических систем, а также теоретические и экспериментальные исследования вопросов надежности показали, что надежная работа гидравлических устройств зависит от многочисленных факторов, находящихся зачастую в сложной зависимости.  [c.10]

Давая общую характеристику критериев разрушения, отметим, что если в качестве критериальной величины взять локальный параметр у вершины трещины (упругое раскрытие на малом расстоянии от вершины трещины, радиус кривизны вершины трещины, деформацию у вершины трещины, угол раскрытия, малую область разрушаемого материала с реакцией материала и т.п.), то все они дадут один и тот же конечный результат (после их применения) именно в силу локальности анализируемой области [39]. Подобные критерии составляют предмет линейной механики разрушения. Вообще, термин линейная механика разрушения относится к задачам о трещинах, поставленным в рамках линейной (линеаризованной) теории упругости. Наоборот, привлечение к анализу свойств пластичности материала приводит к потерям однозначных оценок, сопряженных с большим разнообразием моделей предельного состояния и разрушения. Критерии, построенные на этой основе, отвечают критериальным величинам интегрального толка, необратимо накапливающимся в ближней и дальней окрестностях трещины. В силу большого разнообразия возможных эффектов, в сравнении с критериями линейной механики разрушения, критерии нелинейной механики разрушения показывают большой разброс результатов не только между собой, но и с экспериментом. С этой точки зрения, имея в виду прикладные расчеты сложных технических систем, целесообразнее и надежнее (и спокойнее для конструктора) критериальные соотношения, основанные на модельных представлениях, заменить прямыми натурными или полу-натурными экспериментами.  [c.74]

Все динамические системы в соответствии с их свойствами можно разделить на три типа линейные, нелинейные и параметрические . Наиболее хорошо развиты статистические методы исследования линейных систем и если заданы статистические параметры внешнего воздействия, анализ и синтез таких систем не представляет принципиальных трудностей. Линейные системы могут быть как с постоянными, так и с переменными во времени параметрами. Ясно, что наиболее просто поддаются анализу линейные системы с постоянными параметрами, но и для линейных систем с переменными параметрами также имеются достаточно надежные приближенные методы расчета [91, 104, 110], правда, процесс вычислений здесь значительно сложнее.  [c.24]

Несмотря на большое разнообразие реальных гетерогенных пористых систем по их химическому составу, пористости, размерам частиц и пор, их различной ориентации по отношению к тепловому потоку и сложности теоретического анализа и математического описания тепловых процессов, происходящих в таких материалах, в настоящее время уже существуют теоретические зависимости, позволяющие с большей или меньшей точностью рассчитать эффективную теплопроводность пористых гетерогенных систем. Однако наряду с этим необходимо подчеркнуть, что все еще отсутствуют достаточно надежные соотношения, которые можно было бы использовать, а тем более такие соотношения, которые были бы общепринятыми для расчета эффективной теплопроводности капиллярнопористых и дисперсных систем определенных классов материалов. Развитие работ в этой области может привести к нахождению таких соотношений, что позволит сократить необходимость проведения сложных, зачастую длительных, трудоемких и дорогостоящих экспериментальных исследований.  [c.403]


Необходимая для математического подхода общность в постановке вычислительных задач, иногда совершенно ненужная в инженерных применениях, также не является достоинством для инженера, потому что иногда принуждает его пользоваться более сложными и трудными методами расчета там, где можно было бы обойтись и более простыми средствами. Но, кроме того, надо считаться с одним очень важным свойством инженерных задач (особенно в стадии эскизного проектирования), резко отличающим их от задач чисто математических. Математическая задача независимо от того, кто и как ее решает, должна иметь одно и то же решение (если только ее решили правильно). Инженерная же задача может иметь множество правильных решений, если ее поручить разным лицам или даже учреждениям. Однако далеко не все эти решения равноценны, и поэтому необходимо уметь выбрать из них наилучшие результаты, т. е. оценить все возможные способы, хотя бы и грубо, но все же достаточно надежно и быстро. Но именно на эту сторону дела в руководствах чисто математического практикума, как правило, внимание р не обращается. Настоящая книга ставит своей целью восполнить указанный пробел и, будучи попыткой составления руководства также по прикладному анализу применительно к потребностям расчета и исследования динамических систем, не стремится к излишней общности приемов решения, а, напротив, привязывает их к конкретным особенностям объектов исследования.  [c.10]

Понятие дерева отказов (fault tree) возникло в связи с анализом надежности сложных систем. Целью построения такого дерева отказов является символическое представление последовательности возникновения условий, приводящих систему к отказу, нежелательному (критическому) для объекта в целом.  [c.31]

В-третьих при анализе и оценке надежности сложных систем, обладающих структурной иерархией достаточно часто требуется выполнение условия однородности (однотипности) элементов, составляющих некоторую систему, что приводит к чрезмерной абстрагированности модельных систем либо к большому количеству допущений. К тому же не учитывается наличие обратной связи между элементами разного уровня и взаимного влияния одноуровневых элементов при нарушении работоспособности некоторых участков системы.  [c.130]

При анализе надежности сложных структур находит также применение метод логических схем с использованием алгебры логики (алгебры Буля). Логические схемы, хотя внешне они иногда получаются достаточно громоздкими, применимы к более широкому кругу систем с наличием разнообразных связей и сочетаний элементов системы.  [c.190]

Б настоящем разделе рассматриваются методы и модели анализа надежности простых систем (см. 4.2) и слЬжных систем (см. 4.3), а также даются рекомендации по статистической оценке показателей надежности простых и сложных систем.  [c.148]

Расчеты 4.1. Расчеты надежности. Общие требования 4.2. Расчеты безотказности и долговечности невосста-навливаемых изделий 4.3. Расчет безотказности восстанавливаемых изделий 4.4. Расчет ремонтопригодности изделий 4.5. Расчет долговечности восстанавливаемых изделий (включая обоснование назначенных показателей долговечности) 4.6. Расчет надежности сложных систем изделий 4.7. Расчет комплектов ЗИП 4.8. Расчет параметров технического обслуживания и ремонта 4.9. Расчет надежности программного обеспечения 4.10. Анализ возможных причин и последствий отказов при проектировании  [c.14]

Анализ работоспособности агрегатного расточного станка. В качестве объекта для анализа работоспособности и прогнозирования надежности рассмотрим агрегатный станок с расточной головкой, предназначенный для обработки отверстий фасонного профиля. Данный станок представляет собой достаточно сложную систему, поскольку инструмент совершает движение по траектории, обеспечивающей обработку фасонного профиля. Основным узлом станка (рис. 120) является копировальная расточная головка, которая предназначена для обработки отверстий в невращаю-щихся деталях и работает в полуавтоматическом цикле. Силовой стол 1 перемещается от гидроцилиндра и обеспечивает требуемую продольную подачу. Стол имеет прецизионные направляющие 3, по которым перемещаются салазки 2. На салазках смонтирована расточная головка 8. Программоноситель 10 представляет собой копир, закрепленный на подвижной каретке 11. По копиру перемещается щуп следящего распределителя 9, закрепленный на подвижной части головки. Щуп гидродатчика управляет поперечной подачей плансуппорта 7 и оправки с резцом 6. Передаточное отношение копировальной системы равно единице. Обрабатываемая деталь 5 устанавливается на плоскость и на два фиксирующих пальца приспособления 4 и закрепляется на ней с помощью прижимных винтов и планок.  [c.370]

В отдельный 4.4 выделено описание методов моделей статис тической оценки показателей надежности систем на основе ста тистических же (ретроспективных) данных о надежности форми рующих систему элементов, а также определения показателей надеж ности систем с помощью методов статистического моделирования Методы статистического моделирования, естественно, могут исполь зоваться для анализа надежности как простых, так и сложных систем, однако их применение наиболее эффективно в случае сложных систем, особенно со схемами произвольной конфигурации.  [c.149]

Следующим этапом практического ознакомления студентов с основными вопросами надежности и долговечности машин является выполнение ими лабораторной работы Испытание токарно-револьверного автомата типа 1Б118 на технологическую надежность . В данной работе студенты изучают методику испытания токарно-револьверного автомата на индивидуальную технологическую надежность, являющуюся кратким примером реализации общей методики испытания станков на технологическую надежность, разработанную и развиваемую в настоящее время в МАТИ под руководством проф. Пронико-ва А. С. и частично преподаваемую студентам при чтении курса лекций по надежности и долговечности машин. Оценка технологической надежности станка в данной работе производится на основе анализа отклонений от номинала размеров деталей, обрабатываемых на станке в течение установленного межнала-дочного периода. Последняя лабораторная работа данного сборника Исследование надежности автоматического импульсного привода является примером испытания на надежность сложной системы автоматического регулирования с обратной связью. Эта работа на примере привода знакомит студентов с методикой и аппаратурой экспериментальных исследований на надежность подобных систем. Студентам предложено, разобрав принцип автоматического регулирования в импульсных системах, структурную и кинематическую схемы привода, изучить схему физических процессов, протекающих в приводе и влияющих на изменение начальных параметров системы. Схема физических процессов, положенная в основу расчета привода на надежность, позволяет выяснить взаимосвязь отдельных элементов импульсного привода, процессов, протекающих в нем во время работы, и выходных параметров системы.  [c.312]

Магистральные, технологические и промысловые газонефтепроводы представляют собой сложные инженерные конструкции, проложенные во всех регионах России и эксплуатируемые в разнообразнейших природно-климатических условиях - от Крайнего Севера, Западной Сибири до средней полосы и пустынных южных районов. Подземная, наземная и надземная прокладки трубопроводов, подводные переходы, различные виды электрохимзащиты от коррозии, особенности технологии строительства и конструктивных решений создают широкий вероятностный спектр параметров прочности и долговечности различных участков трубопроводов. Это учитывается на стадиях конструкторского проектирования и эксплуатации систем трубопроводов. Анализ надежности и безопасности участков обеспечивает нахождение оптимальных конструктивных решений, рациональный выбор трассы, объемов и сроков диагностики их технического состояния в процессе строительства и эксплуатации, капитального ремонта и реконструкции, позволяет подготовить рекомендации для персонала по их действиям в потенциальных нештатных ситуациях. Такой анализ способствует уменьшению потерь транспортируемого продукта, снижению технического обслуживания, индивидуального риска для персонала и населения и т.п.  [c.525]

К характеристикам экстрсхмальных значений непрерывного случайного процесса ( ) обычно относятся вероятностные характеристики, связанные с описанием случайных величин типа числа экстремумов (максимумов, минимумов), а также с описанием величины наибольшего максимума или наименьшего минимума траектории рассматриваемого процесса (t) на некотором заданном интервале времени [ о, о + Т]. Знание характеристик экстремальных значений оказывается необходимым при анализе предельных отклонений и анализе устойчивости сложных технических систем, при решении отдельных задач теории надежности [45, 13]. Часто к исследованиям характеристик экстремальных значений сводятся задачи описания шероховатости поверхностей при механической обработке деталей [96], задачи описания взволнованной поверхности моря [57], сейсмических [9, 22] и ветровых [57] воздействий, задачи анализа вибраций [12] и др.  [c.143]

Для повышения надежности станков и автоматических станочных систем целесообразно осуществлять следующее 1) оптимизацию сроков службы наиболее дорогостоящих механизмов и деталей станков на основе статистических данных и тщательного анализа с использованием средств вычислительной техники 2) обеспечение гарантированной точностной надежности станка и соответствующей износовой долговечности ответственных подвижных соединений — опор и направляющих 3) применение материалов и различных видов термической обработки, обеспечивающих высокую стабильность базовых деталей несущей системы на весь срок службы станка 4) замену в ответственных соединениях смешанного трения жидкостным трением на основе применения опор и направляющих с гидростатической и гидродинамической, а также с воздушной смазками 5) применение в наиболее ответственных случаях при использовании сложных систем автоматического станочного оборудования принципа резервирования, резко повышающего безотказность системы 6) распространение в станках профилактических устройств обнаружения и предупреждения возможных отказов по наиболее вероятным причинам.  [c.31]


Возрастающая на современном этапе роль ЭК страны, сложность его внутренней структуры и многочисленные связи с экономикой делают анализ условий развития этого комплекса сложнейшей народнохозяйственной задачей. Актуальность проблемы обеспечения надежности системы топливо- и энергоснабжения народного хозяйства обусловлена прежде всего следующими тенденциями развития ЭК, негативно влияющими на его надежность (см. введение) возрастанием цены отдельных аварий вследствие концентрации производственных мощностей повьшюнием опасности развития аварий в результате изменения динамических свойств систем энергетики повышением напряженности топливно-энергетического баланса в связи со снижением темпов роста производства основных видов энергоресурсов и резервных мощностей как следствием роста капиталоемкости добычи, транспорта, переработки и преобразования энергоресурсов и повышения напряженности топливно-энергетического баланса и т. д. Все это усложняет решение вопросов надежного обеспечения потребителей топливом и энергией, особенно в периоды остропиковых нагрузок, когда даже не очень серьезные аварийные ситуации могут привести к каскадному нарастанию отклонений от нормального режима функционирования энергоснабжающих систем.  [c.405]

В первом томе изложены современные методы aнaлитичe oгo исследования колебательных систем с конечным числом степеней свободы к линейные систем с распределенными параметрами. Дала теория устойчивости колебательных систем, приведены методы аналитического описания и анализа колебательных процессов. Приведены результаты новейших достижений, методы определения собственных частот и форм колебаний систем сложной структуры. Большое внимание уделено параметрическим и случайным колебаниям, ударным процессам и распространению волн, а также теории вибрационной надежности.  [c.4]

Совершенствование методов расчета и проектирования конвейеров и конвейерных систем. Применяемые методы расчета и ироектирования но средним нагрузкам, средним коэффициентам и средним показателям не отражают фактического положения, не всегда дают исчерпывающей оценки и не обеспечивают высокой надежности работы современных конвейеров со сложной трассой. Для выполнения расчетов необходимы тщательный анализ условий работы и нагружений конвейера, анализ возможных изменений и неблагоприятных сочета1П1Й этих условий, строго днфференцировапиый выбор расчетных показателей и нагрузок но конкретным условиям работы каждого конвейера, поиски оптимальных вариантов проектных решений с привлечением ЭВМ.  [c.9]


Смотреть страницы где упоминается термин Анализ надежности сложных систем : [c.138]    [c.178]    [c.510]    [c.14]   
Смотреть главы в:

Надежность систем энергетики и их оборудования. Том 1  -> Анализ надежности сложных систем



ПОИСК



Анализ сложных систем

Надежности анализ

Надежность сложных систем

Система анализ

Система сложная



© 2025 Mash-xxl.info Реклама на сайте