Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость вращающегося эллипсоида

УСТОЙЧИВОСТЬ ВРАЩАЮЩЕГОСЯ ЭЛЛИПСОИДА 243  [c.243]

В предыдущем случае, когда эллипсоид двигался между двумя стенками, находясь на различных расстояниях от них, было отмечено, что направление вращающего момента может изменяться в зависимости от формы эллипсоида. Из этого факта вытекает существование у сфероида устойчивой ориентации, и задача ее  [c.388]

Устойчивость вращающегося эллиисоида. В качестве примера применения уравнений движения (13.15.13) рассмотрим задачу об эллипсоиде, вращающемся около своей оси а с угловой скоростью со. Спрашивается, при каких условиях это движение устойчиво по первому приближению относительно малых возмущений Предполагая, что возмущенное движение мало отличается от невозмущенного, будем считать т, п, со2, з малыми величинами одного порядка, что позволит нам составить уравнения движения с необходимой степенью точности. Итак, пренебрегая членами второго порядка, будем иметь  [c.242]


Ляпунов сначала занялся исследованием вопроса об устойчивости эллипсоидных форм равновесия вращающейся жидкости этой проблеме посвящена была его магистерская днссертащтя (1884). В этой работе он ввел определение понятия устойчивости вращающейся жидкости. Он доказал, что признак устойчивости системы, обладающей конечным числом степеней свободы (теорема Лагранжа—Дирихле), не может быть безоговорочно перенесен на случай движения жидкости, имеющей бесконечное число степеней свободы. Далее он установил достаточный критерий устойчивости фигур равновесия и показал, что эллипсоид вращения является устойчивой фигурой равновесия, если его эксцентриситет не превышает некоторой, определенной Ляпуновым, величины. В частности, он дал полный разбор вопроса об устойчивости некоторых ранее известных фигур равновесия, так называемых эллипсоидов Маклорена и Якоби.  [c.266]

Проблема разыскания устойчивых форм вращающихся жидких объемов способствовала развитию многих теоретических вопросов математики н механики, особенно же теории потенциала и общего учения об устойчивости движений. Мировую известность приобрели работы в этом направлении создателя современной теории устойчивости движения академика А. М. Ляпунова (1857—1918J, который нашел бесчисленное множество фигур равновесия вращающейся жидкости, близких к эллипсоидальным, открытым ранее в 1742 г. Маклореном (эллипсоид вращения) и в 1834 г. Якоби (трехосный эллипсоид). А. М. Ляпунов исследовал также фигуры равновесия вращающейся неодио-родной жидкости, что особенно существенно для проблем космогонии.  [c.117]

Эллипсоид. Стационарные и автоколебательные конвективные движения в полости эллипсоидальной формы (в том числе вращающейся) подробно исследовались в работах Ф.В. Должанского с сотрудниками. В [127] показано, что конвекция идеальной жидкости в эллипсоиде с пространственно-линейными полями скорости и температуры описывается шестимодовой системой уравнений движения тяжелого волчка. Для конвекции вязкой и теплопроводной жидкости предложены и изучены модели, в которых диссипативные эффекты учитывались феноменологически [128]. Непосредственный вывод шестимодовой модели из уравнений Буссинеска проведен в работе М.А. Закса [129]. Предложенная модель описывает до 13 различных стационарных режимов, обменивающихся устойчивостью при изменении числа Рэлея. Хаотический режим существует на интервалах значений числа Рэлея, ограниченных сверху и снизу последовательностями бифуркаций типа удвоения периода.  [c.286]

Одними из первых методом функций Ляпунова были решены задача Эйлера об устойчивости прямолинейной формы равновесия тонкого стержня постоянного сечения, находящегося под действием продольной постоянной нагрузки (Н. Г. Четаев, 1946) и задача об устойчивости круговой формы однородной гибкой нерастяжимой нити в отсутствие внешних сил (П. А. Кузьмин, 1948—1949). В обеих задачах введено счетное множество обобщенных координат системы, причем для второй из названных задач рассматривается обоснование перехода от конечного числа переменных к бесконечному введением гильбертова пространства. Построением функции Ляпунова была также решена задача об устойчивости эллипсоидов Маклорена вращающейся гравитирующей жидкости по отношению к конечному числу переменных, характеризующих простое, по Лиувиллю, движение жидкости (В. В. Румянцев, 1959). Применение теоремы Ляпунова о неустойчивости позволило строго доказать неустойчивость вихревых цепочек Кармана (Г. В. Каменков, 1934 Н. Е. Кочин, 1939).  [c.30]


Другое направление в исследовании устойчивости сплошных сред, позволяюш ее успешно решать конкретные задачи, связано с распространением на сплошные среды теорем Лагранжа и Рауса. Как известно, названные теоремы были доказаны для систем е конечным числом степеней свободы задолго до создания Ляпуновым теории устойчивости однако их можно доказать и на основе теоремы Ляпунова об устойчивости. Как уже упоминалось во введении, Ляпунов ввел определение устойчивости формы равновесия жидкости и установил теорему, сводящую вопрос об устойчивости формы равновесия вращающейся жидкости к решению задачи минимума функционала, представляющего собой измененную энергию системы. Задача минимума была решена А. М. Ляпуновым в его работах 1884 и особенно 1908 г. (Собр. соч., т. 3, 1959), что позволило ему получить строгие заключения об устойчивости фигур равновесия вращающейся жидкости в форме эллипсоидов Маклорена и Якоби, а также некоторых фигур, производных от последних.  [c.32]

С точки зрения космогонии важно как можно дета.пьнее описать такой путь развития. Было бы интересно, конечно, представить эту эволюционную проблему как можно полнее, но литература по этому предмету очень разнообразна и, к тому же, носит в основном исследовательский характер. Поэтому едва ли в одном отдельном издании можно осветить эту задачу во всей полноте. П всё-таки имеет смысл дать полное математическое описание тех частей предмета, которые необходимы для обоснования достоверности упомянутой выше эволюции. Для этого сначала мы рассмотрим проблему устойчивости с главным акцентом на вращающиеся системы. За этим следует обсуждение сферических, сфероидальных и эллипсоидальных фигур равновесия и тех их свойств, которые можно вывести с помощью простых методов динамической теории. Далее мы излагаем элементы эллипсоидального гармонического анализа и доказываем некоторые важнейшие свойства функций Ламэ. Затем, используя этот математический аппарат, перейдём к изложению результатов исследования Пуанкаре вековой устойчивости последовательностей Маклорена и Якоби. После этого мы уделим внимание исследованию Картаном обыкновенной устойчивости эллипсоидов Якоби. В заключении рассматриваются этапы эволюции системы и обсуждаются возможные применения в космогонии.  [c.20]

Абалакин в. к. К вопросу об устойчивости точек либрации в окрестности вращающегося гравитирующего эллипсоида.— Бюлл. ИТА, 1957, т. 6, № 8.  [c.304]


Библиография для Устойчивость вращающегося эллипсоида : [c.305]   
Смотреть страницы где упоминается термин Устойчивость вращающегося эллипсоида : [c.55]    [c.64]    [c.125]    [c.62]   
Смотреть главы в:

Аналитическая динамика  -> Устойчивость вращающегося эллипсоида



ПОИСК



Приложения к вращающимся системам. Вековая устойчивость эллипсоидов Маклорена и Якоби. Равновесие фигуры грушевидной формы

Эллипсоид



© 2025 Mash-xxl.info Реклама на сайте