Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения и температурные перепады

НАПРЯЖЕНИЯ И ТЕМПЕРАТУРНЫЕ ПЕРЕПАДЫ  [c.38]

Из (2-47) следует, что подъемная сила будет тем больше, чем выше значение следующих величин напряженности гравитационного поля g, температурного коэффициента объемного расширения р и температурного перепада А/.  [c.54]

На величину остаточных напряжений, возникающих в отливках от неравномерного охлаждения их в форме, влияют конструкция деталей, температурные поля в них, свойства материала. Основное влияние оказывает не абсолютная разница температур в разных частях отливки, а характер их изменения по сечению. Так, при распределении температуры в сечении отливки по линейному закону напряжения в ней отсутствуют. На величину остаточных напряжений оказывает влияние скорость охлаждения отливки, особенно при температурах, соответствующих переходу металла из пластического в упругое состояние. Для чугуна этот температурный интервал равен 400—700° С. Изменение скорости охлаждения отливки при температурах ниже и выше этого интервала практически не сказывается на величине остаточных напряжений. Ускорение охлаждения отливки в этом интервале увеличивает остаточные напряжения от температурных перепадов по толщине стенки.  [c.281]


Как видно из рис. 8.6, увеличение нормальной силы приводит к уменьшению напряжений, вызванных температурным перепадом, причем сумма значений напряжений в арматуре от температурного воздействия и нормальной силы не очень значительно (не более чем на 20%) отличается от значения напряжения от действия температурного перепада до приложения нормальной силы.  [c.160]

Высокочастотный нагрев основан на принципе преобразования электрической энергии в ее эквивалент тепловой энергии. Поскольку преобразование происходит по всей массе материала, подвергающегося воздействию тока высокой частоты, потери энергии и температурные перепады минимальны. Нагревание происходит очень быстро и относительно равномерно. Под действием высокочастотного электрического поля, направление которого меняется несколько миллионов раз в секунду, молекулы в материале подвергаются периодическим толчкам. Количество тепла, возникающего в пластмассе, прямо пропорционально мощности высокочастотных колебаний, воздействию которых оно подвергается. Однако напряжение и частота, при которых эта мощность имеет место, зависит от вида материала и его электрической характеристики, известной под названием коэффициента потерь . К счастью, большинство пластмасс, так же как и других применяемых диэлектрических материалов, имеет достаточно высокий коэффициент потерь, поэтому для их сварки токами высокой частоты применяется электрический ток невысокого напряжения и частоты.  [c.123]

Расчет напряжений и перемещений в полом цилиндре от равномерного давления и температурных перепадов в сечениях, удаленных от краев на расстояние 1 2,5иа Ь-а), приведен в табл. П 3.17, П 3 18.  [c.270]

Проведенные на основании зависимости (4.28) оценки показывают, что для материалов оболочек твэлов, таких как графит, максимальная разность температуры на поверхности между точкой касания и точкой с максимальным локальным коэффициентом теплоотдачи не превышает 10% среднего температурного перепада в оболочке, что, по-видимому, не приведет к существенному изменению температурных напряжений в теплопроводной оболочке шарового графитового твэла.  [c.86]

В результате совместного действия различных нагрузок сварной аппарат находится в сложном напряженно-деформированном состоянии. Величина рабочих напряжений и их распределение в конструктивных элементах аппарата в значительной мере определяют работоспособность, уровень и характер поврежденности. Особенно опасны конструкции, работающие в условиях знакопеременных нагрузок при наличии дополнительных негативных факторов, таких как, например, коррозия, температурные перепады, изменения состава сырья и т.д.  [c.204]

Исследование циклического разрушения в упруго-пластической области, имеющего актуальное значение для энергетического, транспортного, строительного оборудования и ряда других отраслей, основывались прежде всего па изучении кинетики напряженного состояния по мере накопления числа циклов на основе свойств диаграмм циклического деформирования. Были установлены в силовом и деформационном выражении условия возникновения либо усталостного, либо квазистатического разрушения, предложены соответствующие схемы расчета для эластичного и жесткого нагружения. Показаны особенности влияния циклических пластических свойств на эффект концентрации напряжений для этого случая сопротивления усталостному разрушению. Применительно к циклическому деформированию от повторного нагрева и охлаждения малоцикловое термоусталостное разрушение бы.ло описано соответствующими кривыми усталости в деформационном выражении, полученными для данного температурного перепада, показана применимость критерия октаэдрических напряжений для плоского напряженного состояния в этом случае.  [c.42]


При ограниченных значениях температурных перепадов приспособляемость возможна и в условиях ползучести. Фактически существует некоторая область напряжений и температур, в которой при данной длительности нагружения ползучесть практи- чески не наблюдается. Таким образом, расчет на приспособляемость в условиях ползучести по существу состоит в замене нре- дела текучести некоторым условным пределом ползучести, т. е. напряжением, при котором деформация за данное время при известной температуре пе превысит некоторой малой величины, установленной допуском.  [c.42]

При одном и том же материале детали остаточные внутренние напряжения изменяются в зависимости от металлургического цикла изготовления. У литых деталей остаточные напряжения уменьшаются с увеличением податливости материала формы, применяющейся для заливки жидкого металла, например, при заливке в земляную форму — ниже, чем при заливке в металлическую они могут быть понижены путем выбора рационального способа заливки и питания формы во время затвердевания. Остаточные напряжения снижаются с уменьшением температурных перепадов, возникающих в массе детали при нагреве и охлаждении, поэтому слишком большая разница в толщине разных элементов детали оказывает неблагоприятное влияние на уровень внутренних напряжений.  [c.407]

При расчёте посадок могут быть поставлены следующие задачи а) определение прочности соединения б) определение напряжений и деформаций в деталях, образующих соединение в) определение усилий запрессовки и выпрессовки г) установление температурного перепада для случая сборки с нагревом (охлаждением).  [c.171]

Тепловые испытания многослойных сосудов показали, что перепад температуры по толщине стенки в многослойных сосудах больше, чем в однослойных, соответственно выше и температурные напряжения вследствие особенностей контактного теплообмена на поверхностях соприкосновения слоев. В результате экспериментальных исследований была установлена зависимость контактных  [c.41]

Так как в данном случае Д/> 0, то знаки напряжений на внутренней поверхности цилиндра, вызванных разницей давлений и температур, будут противоположны. Это говорит о том, что при заметных температурных перепадах опасное сечение может быть на г > Гв.  [c.390]

Для элементов конструкций и деталей машин с высокой исходной концентрацией напряжений (щелевые сварные соединения, резьбовые соединения и др.) или испытывающих действие только высоких температурных напряжений от резких перепадов температур по толщине стенки указанные выше запасы могут быть снижены соответственно до 1,5 и 3.  [c.237]

По мере нагружения и, следовательно, прогрева корпуса стопорного клапана эти температурные перепады уменьшались и при N = Л ном номинальных параметрах свежего пара перепады соответственно составляли = 40 С = з-9 20 С. Такие температурные перепады не являются опасными с точки зрения напряженного состояния.  [c.212]

Температурные напряжения в стенках обогреваемых элементов, вызываемые перепадом температуры по толщине стенки или по периметру детали, в нормах не учитываются. Предотвращение значительных перепадов температуры по толщине стенки, а следовательно, и высоких температурных напряжений достигается введением ограничений по максимально допустимым толщинам стенок обогреваемых элементов. Экспериментальные исследования и опыт эксплуатации показывают, что температурные напряжения приводят к повреждениям лишь при Циклическом И.1 характере и высоком уровне, а также при наличии дефектов в материале или изделии. Увеличение толщины стенок не является эффективным методом борьбы с повреждениями от температурных напряжений, а, наоборот, может только ускорить их появление. Правильным способом предотвращения этих повреждений является выполнение соответствующих конструктивных и режимных мероприятий, обеспечивающих минимальные температурные перепады в стенке, а также выполнение всех требований к качеству материала и изделий.  [c.299]

Из анализа статистических данных измерений глубины трещин и зависимости повреждаемости барабанов от числа пусков и остановов следует, что в первый период эксплуатации повреждаемость в зоне отверстий определяется термическими напряжениями, чем и объясняется поверхностный характер образующегося большого числа мелких трещин, распространение которых тормозится на определенной глубине. Развитие большей части трещин прекращается в поверхностном слое на глубине примерно равной 5 мм, что соответствует характеру изменения температурного перепада по толщине стенки.  [c.22]

Закономерности сопротивления материалов разрушению при повторном возникновении упругопластических деформаций вследствие нестационарного температурного режима следует изучать в соответствующих условиях нагружения и нагрева с изменением величин деформаций и напряжений, поскольку в реальной конструкции один и тот же термический цикл может вызвать различные деформации и напряжения в деталях из-за переменной жесткости системы. С этой целью проводят испытания на растяжение и сжатие по методу Л. Коффина с варьируемой жесткостью нагружения образца в условиях заданного температурного перепада.  [c.35]

К динамическим нагрузкам, несмотря на отсутствие значительных инерционных сил, можно отнести периодические многократно повторяющиеся нагрузки, действующие на элементы конструкций и сооружений. Такого рода нагружения характерны для элементов машиностроительных конструкций, таких, как вагонные оси, валы, лопатки турбин и компрессоров и т. п. Изменения температуры (например, суточные и сезонные температурные перепады) также приводят к периодическим изменениям усилий и напряжений.  [c.323]


Коль скоро камера сгорания содержит самые горячие газы, она должна выдерживать температурные перепады, возникающие при пуске и останове турбины. Механические напряжения, да и особенности охлаждения сдерживают свободное тепловое расширение в узлах камеры сгорания. В результате возникают термические напряжения и процесс малоцикловой усталости. Конструкторам камеры сгорания, рассматривающим механические аспекты ее работы, приходится балансировать в своих решениях между необходимостью подавления многоцикловой усталости и свободой термического расширения. Последняя должна быть достаточно большой, иначе недопустимо малой окажется долговечность в режиме малоцикловой усталости.  [c.57]

При эксплуатации на изделия из силикатного стекла могут действовать ударные нагрузки, а также статические нагрузки от температурных перепадов и от деформаций конструкций. При этом могут возникать особенно опасные для стекла остаточные растягивающие напряжения.  [c.6]

Методы защиты изделий машиностроения от коррозии базируются на полном или частичном снижении активности факторов, определяющих развитие коррозионных процессов, и состоят в обеспечении в процессе конструирования минимальной площади контакта поверхности деталей с алрессивной средой, возможности удаления с поверхности деталей влаги и инородных частиц, минимальных напряжений и температурных перепадов в элементах конструкции, приспособленности конструкции к реализации технологических и эксплуатационных мер защиты от коррозии, а также в правильном выборе конструкционного материала и защитного покрытия.  [c.10]

Долговечность цементобетонных покрытий [42] во многом зависит от того, насколько полно и правильно при проектировании покрытия будут з тены температурные нагрузки. Л.И. Горецким было показано, что наличие в покрытии нестационарного температурного поля и температурных перепадов приводит к таким растягивающим напряжениям, которые могут превышать предел прочности бетона на растяжение и служить причиной трещинообразования в покрытии. Таким образом, впервые была разработана методика расчета рациональных размеров цементобетонных плит в плане с з етом воздействия температуры внешней среды.  [c.31]

Часто эти причины бывают случайного характера выемки или выступы на стенках изложницы или формы неудачной конструкции приварка металла к изложнице в отдельных местах выплески металла за край, вызывающие при быстром затвердевании провисание всего слитка и т. п. Особенно легко подобные трещины могут получиться в наружной корке, когда она еще тонка но и во вполне затвердевщем слитке подобные трещины могут возникать от напряжений, обусловленных усадкой не только при затвердевании, но и при последующем сокращении объема при охлаждении твердого слитка. В последнем случае особенно важна скорость охлаждения, при которой создается разность изменения объема между наружными и внутренними зонами слитка, вызывающими напряжения, аналогичные напряжениям, получающимся при закалке образцов (см. далее 105). В сплавах, испытывающих превращение в твердом состоянии (как, например, в стали), к этим напряжениям от температурного перепада в слитке могут прибавляться еще и напряжения от объемных изменений при. фааовых превращениях в связи с быстрым охлаждением следовательно, трещины могут получиться в результате суммарного воздействия напряжений как усадочного, так и фазового происхождения.  [c.180]

В однонаправленном композите после охлаждения на 153 °С от температуры, соответствующей отсутствию усадочных напряжений. Средние напряжения в направлении армирования в волокне и матрице приблизительно одинаковы, но противоположны по знаку. Максимальные нормальные напряжения в поперечных направлениях выше, чем в направлении армирования и в среднем не равны нулю вдоль любой стороны рассматриваемого повторяющегося элемента структуры. Ни одной из компонент напряжения в данном материале нельзя пренебречь, если учесть, что температурный перепад в 153°С обычен для цикла отверждения промышленного полуфабриката и что предельные напряжения материала матрицы составляют около 69 Н/мм (10 фунт/дюйм2).  [c.262]

Более высокие скорости охлаждения, необходимые, например, при исследовании термопрочности материалов для создания существенных температурных перепадов и температурных напряжений, обусловливающих полное разрушение или частичную поврежденность образца, могут быть получены либо путем контакта нагретого образца с охлаждающим устройством, отводящим тепло по специальному хладопроводу, либо непосредствен- 77  [c.77]

На рис. 3 показаны эпюры осевых и кольцевых напряжений на наружной и внутренней поверхности среднего слоя трубы с кольцевыми гофрами от нагрева на 60 С, полученные при расчете трубы по программам, разработанным в Институте механики АН УССР. В качестве примера рассмотрен гофр высотой 18 мм, шириной 200 мм с шагом 800 мм. Согласно расчету, компенсирующая способность такой трубы 1,06 мм на 1 м длины. Максимально допустимый температурный перепад для стали с аг = 420 МПа составляет 88 °С. Осевая жесткость рассматриваемой трубы, напряжения сжатия в трубе от нагрева и усилия, действующие на опоры и задвижки, уменьшатся в три раза по сравнению с обычной.  [c.237]

Тепловые испытания многослойных сосудов показали, что перепад температуры по толщине стенки в многослойных сосудах больше, чем в однослойных, вследствие особенностей контактного теплообмена на поверхностях соприкосновения слоев [20]. В результате экспериментальных исследований была установлена нелинейная зависимость контактных температурных сопротивлений в многослойном пакете от контактного давления [21]. На основе полученных зависимостей разработаны методы расчета теплового поля и температурных напряжений в многослойном цилиндре [22, 23] и в зоне кольцевого шва [24]. Описано качественно новое явление — зависимость поля температур от напряженного состояния многослойной стенки и, в частности, перепада температуры по толщине стенки от внутреннего давления (рис. 3). С учетом контактной теплопроводности решена также задача нахождения нестационарного темнератур-ного поля при внутреннем и наружном обогреве [251. Теоретические расчеты проверялись экспериментами на малых моделях [26], в том числе тепловыми испытаниями в специальном защитном кожухе. В настоящее время институт располагает защитным сосудом объемом 8 м , рассчитанным на пневматическое разрушение в нем экспериментальных сосудов.  [c.264]

На режимах растопка — останов котла в стенках барабанов возникают температурные напряжения, зависящие от перепадов температур по толщине стенки, по окружности и вдоль оси, а также от местных температурных перепадов в зоне очков водоопуск-  [c.62]

Расчет часто невозможен без проведения испытаний на усталость, чрезвычайно длительных для того, чтобы воспроизвести температурный цикл и выдержать время, необходимое для имитации двухсменного режима эксплуатации турбины. Используемые сейчас методики основаны на экстраполяции, которая вноси" некоторую неопределенность. Ранее фиксировались только вызванные термоциклированием систематические усталостные разрушения в турбинах с конструкцией пароввода, которая вызывала концентрацию напряжений из-за резкого температурного перепада, возникающего в момент попадания в турбину горячего пара. Эти турбины работали при температуре 510° С и давлении пара 65 бар и во всех случаях корпуса растрескивались примерно после 8000 циклов. После этого турбина была реконструирована, чтобы уменьшить интенсивность напряжений и защитить зону па-роввода, но даже в первоначальной конструкции при работе в установившемся режиме разрушений не наблюдалось. Однако, есть многочисленные примеры образования трещин, причем некоторые из них распространялись через всю стенку корпуса.  [c.205]


В трехбарабанных котлах рассматриваемого типа за пароперегре -вателем размещалось обычно около 60—65% поверхности нагрева труб, работающих с малым тепловым напряжением вследствие сравнительно незначительного температурного перепада между дымовыми газами и кипящей водой. Наличие трех барабанов и малое тепловое напряжение  [c.81]

Барабан и коллекторы, паропроводы перегретого пара, питательные трубопроводы, трубопроводы непрерывной продувки, газовоздухопроводы и т. п. находятся вне обмуровки и располагаются вокруг агрегата вдоль его стен рядом с площадками обслуживания и переходными лестницами. В зависимости от состояния рабочего тела перечисленные элементы оборудования имеют температуру 200—600° С и более. Их покрывают тепловой изоляцией. Это улучшает санитарно-гигиени-ческие условия работы эксплуатационного персонала и снижает потери Qs- Высококачественная тепловая изоляция позволяет уменьшить потери тепла в окружающую среду по сравнению с неизолированной поверхностью на 95—97%. Изоляция барабана, коллекторов, трубопроводов и арматуры, кроме того, улучшает условия работы металла этих элементов, так как уменьшается температурный перепад по толщине металла, а следовательно, снижаются и температурные напряжения. Теп-  [c.208]

Разрушение керамического изделия под влиянием температурных перемен происходит в результате напряжений, возникающих в материале этого изделия. Такие напряжения могут вызываться разными причинами и иметь различный характер. Главные из этих причин различие температуры в разных частях нагреваемого или охлаждаемого изделия, т. е. наличие температурного перепада разные значения ТКЛР компонентов в многофазовой керамике ограничение возможности расширения.  [c.14]

Здесь snj, ij) - амплитудно-частотная характеристика кольцевых напряжений, обусловленных внутренним давлением перекачиваемого продукта, у = О, 1, 2,. .., У Яр - рабочее давление перекачиваемого продукта о 12(0 - линейная функция напряжений по длине трубопровода ц - коэффициент поперечной деформации материала элемента а - коэффициент линейного расширения материала трубы At - расчетный температурный перепад р] -радиус изгиба оси трубопровода при его укладке, пучении грунтового массива, криогенного растрескивания в горизонтальной плоскости Р2 - радиус изгиба оси трубопровода, вызванного укладкой, пучением, криогенным растрескиванием, в вертикальной плоскости р, = />(р,[c.544]

Одним из сильнейших факторов, влия гщих на сопротивление усталости соединений, является остаточное напряженное поле в зоне шва. Вследствие резкого температурного перепада, структурных изменений и упругопластического деформирования в зонах сварных соединений возникают значительные остаточные напряжения, величина которых может достигать и даже существенно превышать предел текучести исходного материала.  [c.33]

В проведенных работах исследовали также влияние термо-циклирования на формоизменение и свойства композиционного материала. После 1000 циклов с температурным перепадом 875° С образцы композиции показали существенную остаточную деформацию в направлениях, перпендикулярных направлению армирующих волокон, в направлении вдоль волокон остаточная деформация оказалась незначительной. Увеличение поперечного сечения образцов композиционного материала после термоцикли-рования сопровождается возрастанием пористости и падением прочности материала. Такое изменение поперечных размеров образца при термоциклировании объясняется с помощью так называемой модели теплового храповика, учитывающей тот факт, что из-за разности температурных коэффициентов линейного расширения матрицы и армирующих волокон в матрице при термоциклировании происходит накопление пластических напряжений сжатия и, вследствие этого, нарушается контакт на границе матрицы и волокна. Использование промежуточного слоя из карбида титана, обеспечивающего увеличение прочности связи на границе раздела, приводит к заметному уменьшению эффекта теплового храповика. Размерная нестабильность в результате термоцикли-рования наблюдается также в композиции никель — углерод, матрица которой легирована 20% хрома или железа.  [c.397]

В большинстве случаев температура на нижней поверхности оболочек Bbmie, чем на верхней, а температура у ее вершины также выше, чем в торцевой части. Рост температуры вызывает значительное снижение характеристик упругости и прочности. Из-за разности значений коэффициентов линейного температурного расширения материалов слоев стенки и значительных перепадов температур по толщине, обусловленных низкими по сравнению с металлами значениями коэффициентов теплопроводности, в оболочке возникают температурные напряжения. Кроме того, вблизи шпангоута из-за разности значений коэффициентов линейного температурного расширения материалов оболочки и шпангоута возникают температурные напряжения, которые совместно с напряжениями от изгибающих моментов и перерезывающих сил оказывают влияние на несущую способность оболочки. На степень достоверности определения несущей способности оболочки расчетным путем оказывают также влияние значительный разброс характеристик упругости и прочности материалов и случайные (трудно контролируемые) отклонения от принятых технологических процессов изготовления оболочек.  [c.352]


Смотреть страницы где упоминается термин Напряжения и температурные перепады : [c.557]    [c.173]    [c.66]    [c.56]    [c.220]    [c.191]    [c.24]    [c.297]    [c.41]    [c.279]    [c.95]    [c.185]   
Смотреть главы в:

Коррозия и вопросы конструирования  -> Напряжения и температурные перепады



ПОИСК



Напряжение температурное

Перепады

Температурный перепад



© 2025 Mash-xxl.info Реклама на сайте