Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проектирование кинематическо звеном - Проектирование

В 93 было указано, что при проектировании кинематических схем механизмов необходимо учитывать возможность движения проектируемого механизма под действием приложенных к нему сил с возможно большим коэффициентом полезного действия. Выполнение этого условия в значительной мере зависит от выбранных размеров и формы звеньев механизма.  [c.420]

Основной задачей синтеза механизмов является воспроизведение заданного движения одного или нескольких звеньев путем непосредственного их воздействия друг на друга или путем введения между ними промежуточных звеньев. Как в первом, так и во втором случае решение этой задачи сводится к проектированию кинематической цепи заданного определенного движения, т. е. механизма.  [c.413]


На рис. 11.16, а для г = ЛО os(p, яг0,24 и 0 = 0,38. График зависимости 0 = 0(г) для манипулятора с размерами звеньев, изображенных на рис. 11.16, а, представлен на рис. 11,16,6. Подобные графики нужны не только при исследовании имеющегося манипулятора, но и при проектировании кинематических схем манипуляторов по заданным условиям.  [c.331]

Шарнирно-рычажные механизмы используют для обеспечения перемещения звена или только определенной точки его по заданной траектории. Например, при проектировании кинематической схемы портовых кранов для уменьшения расхода энергии и удобства управления необходимо обеспечить нахождение груза на одной высоте при изменении вылета стрелы, что достигается горизонтальным движением головки стрелы Е (рис. 6.2). При проектировании роботов и манипуляторов (см. гл. 18) размеры звеньев механизма подбираются из условия достижения захватом манипулятора любой точки пространства в зоне его обслуживания (рис. 6.3).  [c.56]

Периодически изменяющиеся в механизмах динамические силы воспринимаются станиной через кинематические пары, связанные со стойкой, и передаются на фундамент машины и перекрытие здания (или корпус автомобиля, самолета, теплохода и т. п.), в котором установлена машина. Динамические давления, передающиеся на станину, могут вызвать вибрационные явления в звеньях машины, раме и перекрытии, на котором она установлена. Эти вибрационные явления увеличивают напряжения в некоторых деталях машины и ее раме или перекрытии, а близость к зоне резонанса может вызвать появление напряжений, выходящих за пределы допустимых величин. Поэтому стремятся полностью или частично погасить указанные динамические давления, добиваясь того, чтобы на раму и далее на фундамент машины передавались давления, постоянные по величине и направлению. Высказанное пожелание может быть учтено еще в процессе проектирования машины при рациональном подборе масс движущихся звеньев и проектировании специальных противовесов.  [c.399]

Принято различать два этапа синтеза механизма. Первый этап — выбор структурной схемы — выполняется на основании структурного синтеза, рассмотренного в 4 гл. I, с использованием справочных данных по отдельным видам механизмов. Второй этап — определение постоянных параметров выбранной схемы механизма по заданным его свойствам. Этот этап обычно начинается с кинематического синтеза, иод которым понимается проектирование кинематической схемы механизма, т. е. определение постоянных параметров кинематической схемы механизма по заданным его кинематическим свойствам. Если требуется учесть и динамические свойства механизма, то решается более общая задача динамического синтеза, под которым понимается проектирование кинематической схемы механизма с определен наем параметров, характеризующих распределение масс звеньев.  [c.349]

Аналогичную же роль играют углы передачи и в кулачковых механизмах, кинематическое исследование и проектирование которых было рассмотрено в предыдущей главе. Напомним, что представляют собой эти углы передачи на примере шатуна и коромысла четырехзвенного механизма (рис. 362) и шатуна и ползуна кривошипношатунного механизма (рис. 363). Углом передачи р, в первом случае мы называли угол составляемый усилием 5, действующим вдоль шатуна (звено 2) и служащим для преодоления момента полезного сопротивления приложенного к коромыслу (звено 3), с направлением коромысла, а вместе с тем и с нормалью п к траектории шарнира В. Угол, составляемый тем же усилием 5 с направлением скорости Уь, а вместе с тем с направлением касательной к траектории р, носит название угла давления и обозначен через а. Таким образом, углы аир будут подчинены зависимости  [c.337]


Синтезом механизма называется проектирование схемы механизма по заданным его свойствам. Различают два основных этапа синтеза механизмов структурный синтез - проектирование структурной схемы механизм по заданным его структурным характеристикам и другим неформальным признакам, связанным с функционированием механизма параметрический синтез - определение постоянных параметров выбранной схемы механизма по за-данньш его свойствам. Если эти свойства относятся лишь к кинематике механизма, то возникает задача кинематического синтеза механизма, под которым понимается проектирование кинематической схемы механизма по заданным его кинематическим свойствам. Если наряду с кинематическим свойствами требуется учесть и динамические свойства механизма, то рассматривается более общая задача динамического синтеза, состоящая в проектировании кинематической схем механизма с определением параметров, характеризующих распределение масс звеньев.  [c.430]

С. включает в себя выбор структурной сх. и определение постоянных параметров выбранной сх. м. по заданным его свойствам. Различают кинематический С. — определение параметров кинематической сх. м. по заданным его кинематическим свойствам, дина миче-ский С. — проектирование кинематической сх. с определением параметров, характеризующих распределение масс звеньев. .  [c.326]

При проектировании кинематических цепей, осуществляющих точные функционально связанные перемещения, должны быть также приняты меры для устранения зазоров между элементами кинематической цепи, Б первую очередь в винтовых парах и в червячных передачах. Вместе с тем должно быть также уделено внимание обеспечению высокой крутильной жесткости кинематической цепи, так как закручивание звеньев кинематической цепи под действием возникающих в процессе резания нагрузок может привести к искажению заданной функциональной связи.  [c.435]

Во втором разделе теории механизмов и машин рассмотрены методы кинематического исследования механизмов определение положений звеньев механизмов построение траекторий точек подвижных звеньев механизма, графиков пути, скорости и ускорения по времени, планов скоростей и ускорений краткие сведения по анализу и синтезу кулачковых механизмов кинематическое исследование и проектирование зубчатых механизмов.  [c.141]

В зависимости от назначения механизма точки ведомых звеньев должны иметь определенные траектории, перемещения, скорости и ускорения. Эти величины зависят от закона движения ведущего звена и от параметров кинематической схемы, т. е. от размеров звеньев механизма, которые определяют его кинематическую схему. В плоских механизмах с низшими парами параметрами кинемати-ческой схемы являются расстояния между центрами шарниров, размеры, определяющие положения поступательных пар, расстояния до точек, описывающих траектории, и т. п. Определение параметров кинематической схемы механизма по заданным геометрическим и кинематическим условиям движения ведомого звена составляет основную задачу проектирования механизмов, так как все  [c.550]

С целью упрощения кинематических расчетов при проектировании была составлена программа для ЭВМ, по которой производилось вычисление передаточных отношений волновых зубчатых механизмов типа Г-2Ж-Н в зависимости от числа зубьев зубчатых колес. Результаты вычислений сведены в табл. 4, из которой следует, что большие значения г я4 получаются в том случае, когда передаточное отношение механизма в относительном движении стремится к единице. При этом передаточное отношение будет также в значительной степени зависеть от точности вычисления Из табл. 4 видно, что одно и то же передаточное отношение можно получить при различных значениях чисел зубьев звеньев механизма. Это обстоятельство дает возможность выбрать по таблице более оптимальные габариты волнового зубчатого механизма при заданном его передаточном отношении. Табл. 4 может быть также использована при проектировании двухступенчатых планетарных зубчатых механизмов с внутренним зацеплением.  [c.223]

Задачи проектирования механизмов. Основными задачами проектирования (синтеза) кулачковых механизмов являются а) выбор типа кулачкового механизма и закона движения толкателя, наиболее полно удовлетворяющего заданным условиям его работы б) определение основных размеров механизма и профиля кулачка, обеспечивающих требуемый закон движения толкателя с учетом допускаемого угла давления в) определение сил, действующих на звенья и кинематические пары механизма, и г) разработка конструкции механизма и расчет его звеньев на прочность и износостойкость.  [c.286]

При движении звеньев механизма в кинематических парах возникают дополнительные динамические нагрузки от сил инерции звеньев. Так как всякий механизм имеет неподвижное звено-стойку, то и стойка механизма также испытывает вполне определенные динамические нагрузки. В свою очередь через стойку эти нагрузки передаются на фундамент механизма. Динамические нагрузки, возникающие при движении механизма, являются источниками дополнительных сил трения в кинематических парах, вибраций в звеньях и фундаменте, дополнительных напряжений в отдельных звеньях механизма, причиной шума и т. д. Поэтому при проектировании механизма часто ставится задача о рациональном подборе масс звеньев механизма, обеспе-  [c.275]


В задачу синтеза входит проектирование по заданным условиям структурной схемы механизма. Следует отличать структурную схему механизма от кинематической. В структурной схеме указываются стойка, виды кинематических пар и их взаимное расположение в механизме. Размеры звеньев не учитываются. Составление структурной схемы необходимо в первую очередь для проведения структурного анализа механизма. В кинематической схеме известны размеры, необходимые для кинематического анализа, силового расчета механизма и дальнейшей разработки его конструкции.  [c.7]

Синтез, или проектирование механизмов, состоит в определении некоторых постоянных параметров, удовлетворяющих заданным структурным, кинематическим и динамическим условиям. К этим параметрам механизма относятся длины звеньев, координаты точек звеньев, угловые координаты, массы звеньев, их моменты инерции и т. д. Так, на рис. 2.1 для проектирования кривошипно-коромысло-Бого механизма по заданному закону движения коромысла 3 необходимо определить шесть независимых параметров длины а, Ь, с и  [c.14]

Кинематические пары во многом определяют работоспособность и надежность машины, поскольку через них передаются усилия от одного звена к другому в кинематических парах, вследствие относительного движения, возникает трение, элементы пары находятся в напряженном состоянии и в процессе изнашивания. Так, например, при работе механизма ДВС, изображенного на рис. 2.1, а, изнашиваются гильза цилиндра и поршневые кольца, коренная А и шатунная В шейки коленчатого вала / и т. д. Поэтому правильный выбор вида кинематической пары, ее геометрической формы, размеров, конструкционных и смазочных материалов имеет большое значение при проектировании машин.  [c.19]

Основное правило проектирования структурной схемы механизмов без избыточных контурных связей можно сформулировать в форме условия сборки замкнутых кинематических цепей (контуров) механизма кинематическая цепь, образующая замкнутый контур (или контуры) механизма, должна собираться без натягов даже при наличии отклонений размеров звеньев и отклонений расположения поверхностей и осей элементов кинематических пар.  [c.50]

Во многих случаях при проектировании машин и механизмов закон изменения обобщенных координат в функции времени удается определить только на последующих стадиях проектирования, обычно после динамического исследования движения агрегата с учетом характеристик сил, приложенных к звеньям механизма, масс и моментов инерции звеньев. В таких случаях движение выходных и промежуточных звеньев определяется в два этапа на первом устанавливаются зависимости кинематических параметров звеньев и точек от обобщенной координаты, т. е, определяются относительные функции (функции положения и передаточные функции механизма), а на втором —определяются закон изменения обобщенной координаты от времени и зависимости кинематических параметров выходных и промежуточных звеньев от времени.  [c.61]

В момент разрыва кинематической цепи (при 2 0) штанга 2 отрывается от кулачка /, возникают дополнительные динамические нагрузки на звенья и клапан 4 становится неуправляемым. При интенсивных отрывах наблюдается повторный отскок клапана за счет ударного восстановления контакта. Все эти явления являются нежелательными и их следует устранять на стадии проектирования профиля кулачка.  [c.474]

Кинематические диаграммы используют главным образом для звеньев с вращательным или прямолинейно-поступательным движением а) при анализе и проектировании кулачковых механизмов  [c.27]

Проектирование плоских механизмов начинается с синтеза плоских структурных схем, на которых определяются число звеньев, характер их относительных движений и все кинематические пары 4-го или 5-го класса. Фактически звенья механизма находятся в разных плоскостях, действительные условия работы кинематических пар на плоской структурной схеме не могут быть изучены, и для перехода к реальному механизму необходимо строить пространственную структурную схему. На пространственной схеме можно определить пути обеспечения непересечения звеньев между собой выявить необходимые изменения элементов кинематических пар с целью обеспечения устойчивой работы. механизма и в связи с этим найти соответствующие замены кинематических пар, а также установить меры по сохранению условий существования плоского механизма.  [c.32]

Погрешности положения звеньев из-за их деформаций нарушают точность движения, что особенно важно для механизмов приборов. Перераспределение нагрузок между звеньями н в элементах кинематических пар особенно важно учитывать при проектировании высокоскоростных машин. Динамические нагрузки, обусловленные упругостью звеньев, достигают величин, соизмеримых с нагрузками от действия сил технологического сопротивления. Необходимость их учета приводит к росту материалоемкости конструкции. В некоторых случаях упругость звеньев такова, что при их деформировании потенциальная энергия упругой деформации становится соизмеримой с кинетической энергией звеньев механизма, с работой сил технологического сопротивления и движущих сил. В этих случаях пренебрежение упругостью звеньев при описании динамических процессов приводит к неправильным представлениям о движениях звеньев и их взаимодействии и, как следствие, к выбору неработоспособной конструкции механизма.  [c.293]

При оптимальном синтезе механизмов сравнение вариантов решения на любой стадии проектирования производится при помощи показателей качества (выходных параметров синтеза). К показателям, учитываемым на первом этапе проектирования, относятся коэффициент полезного действия, точность воспроизведения заданной функции или заданной траектории, равномерность движения исполнительного звена, силы, возникающие в звеньях и кинематических парах, динамические нагрузки, уровень механических колебаний, виброакустическая активность.  [c.320]

В процессе изготовления деталей и сборки механизмов, а также при их эксплуатации происходят искажения формы и размеров звеньев, изменяется характер сопряжения в кинематических парах, возникают деформации деталей, которые изменяют кинематические и динамические свойства механизмов и заметно влияют на точность и надежность выполнения механизмами заданных функций. Поэтому проектирование точных механизмов ведется с учетом основных факторов, влияющих на точность отдельных деталей и механизма в целом.  [c.102]

Проектировать механизм по полному числу параметров практически нецелесообразно, потому что очень часто механизм получается с неудачными соотношениями длин звеньев и большими углами давления в кинематических парах. Практически рационально оставлять некоторые из постоянных параметров свободными, чтобы можно было спроектировать механизм во многих вариантах и затем, выбрать из них оптимальный. Современная счетная техника позволяет такое проектирование производить в сотнях и даже тысячах вариантов, из которых и выбираются наиболее подходящие. Например, проектирование кривошипно-коромыслового механизма можно вести по шести параметрам, определяющим его схему, а начальные углы наклона кривошипа и коромысла задавать. В этом случае можно поступать следующим образом. Намечаем на окружности кривошипа область, определяющую его возможные начальные положения. На дуге, описываемой концом коромысла, выбираем аналогичную область. Если на указанных дугах мы отметим-по десять точек, определяющих начальные положения кривошипа и коромысла, то это позволит нам спроектировать механизм, в ста вариантах. Дополнительно можно варьировать углами раз-  [c.204]


Проектирование кинематической схемы кривошипно-пол-зунного механизма по трем заданным положениям ведущего 1 и ведомого 3 звеньев (рис. 117), применяя описанный метод. Заданы три линейные координаты Sg,, точки В ползуна  [c.104]

Рис. 19.2. К проектированию кинематическо схемы центроидного механизма а) схема механизма б) графика угловых скоростей звеньев 2 и 3. Рис. 19.2. К проектированию кинематическо схемы центроидного механизма а) схема механизма б) графика угловых скоростей звеньев 2 и 3.
Динамический синтез — проектирование кинематической схемы механюма с учетом его динамических свойств, в том числе и распределения масс звеньав.  [c.32]

При проектировании самоустанавливающихся многоповодковых механизмов воспользоваться теорией Ассура чрезвычайно затруднительно по следующим причинам есть много случаев, когда группы Ассура имеют ненулевую подвижность и избыточную связь группы с одним базовым звеном в зависимости от классов кинематических пар могут быть не только трехповодковыми, но двух-, трех-, четырех-, пяти-, шестпповодковыми. Еще сложнее при двух базовых звеньях при проектировании иногда выгоднее в одной присоединяемой группе оставлять подвижность, которую необходимо ликвидировать следующей группой (см. рис. 1.18). Можно рекомендовать метод сборки так, чтобы не было натягов и чтобы устранять вредные подвижности.  [c.113]

Э. Э. Кольман-Иванов проектирование циклограммы разбивает на две части после выбора типа технологической схемы машины и перед проектированием кинематической схемы составляют предварительную циклограмму, учитывающую только операции технологического процесса и структуру машины [23]. После проектирования кинематической схемы и разработки чертежей соответствующих узлов и исполнительных механизмов циклограмму корректируют с учетом возможных ошибок положений рабочих органов, возникающих из-за погрешностей в размерах звеньев и кинематических пар, пересечения траекторий звеньев механизмов, отсутствия циклового времени на обратные хода каких-либо механизмов и т. п. [23].  [c.42]

Выбор той или иной кинематической схемы механизма определяется в первую очередь из конструктивных соображений необходимостью воспроизведения требуемого по условиям технологического процесса движения выходного звена. Выбор закона движения выходного звена в функции обобщенной координаты является o HOBHfjiM этапом в проектировании кулачкового механизма. При выборе закона движения необходимо, чтобы этот закон удовлетворял требованиям того технологического процесса, для выполнения которого проектируется кулачковый механизм.  [c.513]

К исходным данным для проектирования кулачковых механизмов относится также выбор основных размеров их звеньев. Здесь сначала надо отметить желательность получения наименьших габаритов механизма, достаточно высокого его коэффициента полезного действия, установление размеров направляющих для толкателей, определение диаметра ролика или размеров плоско11 тарелки толкателя и коромысла и т. д. Основные конструктивные размеры звеньев кулачковых механизмов также связаны и с расчетом на прочность этих звеньев, износом профилей элементов высшей кинематической пары, надежности работы механизма и т. д.  [c.516]

При больилпх нагрузках и высоких скоростях двн кеиия деформации звеньев механизмов оказывают заметное влияние иа их кинематические и динамические характеристики. Проектирование механизмов (в том числе и кулачковых) с учетом упругости звеньев относится к задачам динамического синтеза. Разработке методов решения таких задач посвящены работы И. Н. Вульфсона, Н. И. Ле-витского и др.  [c.65]

Решение этих задач важно для проектирования и расчета механизмов машин и приборов. Существует два способа решения задач кинематического исследования механизмов — графический и аналитический. Графинеский способ отличается наглядностью, относительной простотой, но не дает в ряде случаев достаточно точных результатов. Аналитический способ позволяет получить требуемую точность, установить в аналитической форме функциональную зависимость кинематических параметров от размеров звеньев и положения начальных звеньев механизма, однако он отличается большей трудоемкостью вычислений.  [c.35]

При решении задач анализа (см. гл. 16...19) и синтеза механизмов (см. гл. 7...15) были приняты допущения, идеализирующие условия их изготовления и работы звенья — абсолютно жесткие, кинематические пары — без за.зоров, законы движения входных звеньев — совпадающие с принятыми в исходных данных и т. д. При этих допущениях получены зависимости, опред дяющие перемещения, скорости, ускорения, сил.ы и т. п. для различных типов механизмов. Но в реальных механизмах эти закономерности точно не выполняются, так как всегда имеют место отклонения действительных параметров звеньев и кинематических пар от принятых при расчете. Это объясняется неизбежными погрешностями при изготовлении звеньев и сборке механизма, изнашивании элементов кинематических пар и т. п., что приводит к отклонению положения звенье.д от предусмотренных на схеме механизма. Чем больше значения отклонений соизмеримы с линейными размерами звеньев, тем сильнее их влияние на работу механизма. Это проявляется в отклонении законов движения реального механизма от предусмотренных при проектировании.  [c.332]

В СВЯЗИ С этим автор сделал попытку перестроить систему изложения, принятую в первом издании, так, чтобы можно было решать новые задачи, поставленные перед теорией механизмов и машин новой техникой. По сравнению с первым изданием автор изменил также порядок изложения материала. В новом издании сначала изложены общие вопросы теории механизмов и машин, необходимые для исследования механизмов всех видов (главы I—IV). Этот материал был подвергнут незначительной переработке. Главы V—IX, посвященные полному кинематическому и кинетостатическому исследованию механизмов различных видов, составлены заново. В главах X—XIII рассматриваются системы с двумя степенями свободы, механизмы с переменными массами звеньев, механизмы регулирования скорости движения машинного агрегата и основные сведения об автоматических устройствах (весь этот материал отсутствует в первом издании). Автор надеётся, что читатель, изучивший предлагаемый курс, получит достаточную подготовку для решения основных задач, связанных с проектированием новых машин.  [c.6]


Смотреть страницы где упоминается термин Проектирование кинематическо звеном - Проектирование : [c.143]    [c.5]    [c.546]    [c.16]    [c.551]    [c.2]    [c.88]    [c.180]    [c.209]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.34 ]



ПОИСК



Звенья кинематических пар

Определение рычажный - Анализ 402 - Задача кинематического анализа 402 - Кла ссификация задач синтеза 430 - Критерий качества передачи движения 400 Метод проектирования замкнутых векторных контуров на оси координат 404 Положение звеньев 403 - Сборки 402 Уравновешивание 511 - Функция положения

Проектирование кинематическо

Проектирование кулачковых механизмов по заданным условиям движения рабочего звена (кинематический синтез кулачковых механизмов)



© 2025 Mash-xxl.info Реклама на сайте