Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шероховатость Упрочнени

Рис. 52. Влияние степени взаимного перекрытия зон лазерного воздействия на шероховатость упрочненной поверхности. Рис. 52. Влияние степени взаимного перекрытия зон лазерного воздействия на шероховатость упрочненной поверхности.

Таким образом, одним из важных параметров процесса упрочнения излучением импульсных ОКГ является коэффициент перекрытия (шаг обработки). На выбор величины этого параметра оказывает влияние ряд ограничений (размер упрочненной и неупрочненной зоны, шероховатость упрочненной поверхности, толщина слоя равномерного упрочнения, производительность процесса). Исходя из того, какой из указанных факторов является лимитирующим, устанавливают максимально возможный коэффициент перекрытия, при котором лимитирующий фактор будет находиться в оптимальных пределах.  [c.79]

Характер влияния плотности мощности излучения и скорости перемещения заготовки на шероховатость упрочненной поверхности установлен для выше рассмотренной инструментальной стали с фосфатным покрытием (см. с. 92). Упрочнение производилось на оборудовании с СО -лазером непрерывного излучения фирмы  [c.100]

Изменение профиля поперечного сечения следа лазерного воздействия с ростом скорости обработки показано на рис. 82. Учитывая форму профиля в поперечном сечении единичного следа, можно предположить, что шероховатость упрочненной поверхности, представляющей собой совокупность ряда дорожек с определенным коэффициентом перекрытия, будет значительно больше в сечении, перпендикулярном к направлению дорожек , чем в сечении, параллельном ему.  [c.102]

При упрочнении деталей обработкой роликом или шариком глубина и интенсивность наклепа, твердость и шероховатость упрочненного поверхностного слоя зависят от режимов упрочнения и свойств материала упрочняемой детали — поверхностной твердости и шероховатости. Поверхностная твердость упрочняемой детали определяется способами восстановления и применяемыми при этом наплавочными и другими материалами, термообработкой, а шероховатость поверхности — качеством механической обработки.  [c.316]

Поверхности после легирования имеют ту же структуру, что и прн ЭЭО. Шероховатость поверхности находится в зависимости от энергии импульсов и эрозионной стойкости легируемого и легирующего материала. Чем выше эрозионная стойкость материалов и меньше энергия импульсов, тем лучше качество обработанной поверхности Минимальная шероховатость упрочненной поверхности находится в пределах У 2 2,5-г - -4 мкм  [c.135]

Процесс упрочнения можно выполнять на специальных установках. При ультразвуковом деформационном упрочнении заготовки закрепляют в камерах, содержащих большое количество стальных шариков диаметром I—3 мм, смачиваемых эмульсией. Камера получает колебания от ультразвукового генератора, и колеблющиеся шарики наносят удары по поверхности заготовки. Шероховатость поверхности после деформационного упрочнения увеличивается.  [c.392]

Распространено дробеструйное динамическое упрочнение. Готовые детали машин подвергают ударному действию потока дроби в специальных камерах, где дробинки с большой скоростью перемещаются под действием потока воздушной струи. Их изготовляют из отбеленного чугуна, стали, алюминия, стекла и других материалов. Исходная шероховатость обрабатываемой поверхности увеличивается.  [c.392]

Выглаживанием называют многочисленные разновидности про-цесса обработки поверхности давлением, без снятия стружки, путем трения скольжения или качения. В процессе выглаживания происходит в той или иной мере изменение геометрических параметров поверхности и показателей физико-механического состояния поверхностного слоя детали. В связи с этим по технологическому назначению выглаживание разделяют на три вида калибровка — для повышения точности размера поверхности и уменьшения шероховатости выглаживание — для уменьшения шероховатости отделка — для достижения упрочнения поверхностного слоя материала.  [c.204]


Дробеструйному наклепу подвергают детали, прошедшие термическую и механическую обработку. Поверхность обрабатываемых деталей подвергается ударам стальных или чугунных дробинок, движущихся с большой скоростью. Под действием ударов множества дробинок поверхность изделия становится шероховатой. Прочность, твердость и выносливость поверхностного слоя повышаются. Глубина упрочненного слоя достигает 0,2—0,4 мм. Особенно эффективно применение дробеструйной обработки для упрочнения деталей, подвергшихся закалке с нагревом ТВЧ или цементации.  [c.154]

Для повышения износостойкости трущихся поверхностей новых деталей наряду с гальваническими покрытиями широко применяют их термическую обработку поверхностную закалку с нагревом газовым пламенем (для поверхностного упрочнения стальных зубчатых колес, червяков, шеек коленчатых валов и пр.), высокочастотную закалку (кулачковые валы, шестерни, шейки валов, гильзы цилиндров, станины станков и др.). С этой же целью применяют обработку поверхностным пластическим деформированием, в процессе которого повышается твердость поверхностных слоев и достигается нужный класс шероховатости поверхности (обкатывание и раскатывание цилиндрических и плоских поверхностей, прошивание, калибрование и др.).  [c.247]

Для повышения сопротивления усталости валов необходимо уменьшать концентрацию напряжений, создавать оптимальную шероховатость поверхности и применять поверхностное упрочнение цементацию, азотирование, закалку ТВЧ, дробеструйный наклеп и т. п.  [c.404]

Коэффициенты ра и 3 учитывают шероховатость поверхности. Для шлифованных и полированных поверхностей принимают Ра = 3т = 1 при чистовой обточке Ра = Ра = 1,05. . . 1,25 при обдирке ра = Р- = 1,2... 1,5. На значение коэффициента р влияет упрочнение поверхности (цементация, азотирование и т. д.). Влияние этих факторов подробно излагается в литературе [26].  [c.316]

Величина предела выносливости конкретной детали конструкции зависит от ряда факторов, главные из которых концентрация напряжений, масштабный фактор (размеры детали) и состояние поверхности детали (шероховатость и поверхностное упрочнение).  [c.280]

Влияние состояния поверхности детали. На предел выносливости влияют шероховатость поверхности детали и поверхностное упрочнение.  [c.283]

Уточненный проверочный расчет валов на усталость исходит из предположения, что нормальные напряжения изменяются по симметричному, а касательные — по асимметричному циклу. Этот расчет заключается в определении фактического коэффициента запаса прочности в предположительно опасных сечениях с учетом характера изменения напряжений, влияния абсолютных размеров деталей, концентрации напряжений, шероховатости и упрочнения поверхностей. Условие сопротивления усталости имеет вид  [c.217]

Коэффициент влияния абсолютных размеров поперечного сечения (см. табл. 1.2) К = 0.83. По табл. 1.4 при й = 0,8 мкм коэффициент влияния шероховатости поверхности А, - = 0,94. Коэффициен) влияния поверхностного упрочнения = 1 —поверхность вала не упрочняется.  [c.291]

Все сказанное относилось к испытанию гладкого полированного образца. Поведение изделий, изготовленных из тех материалов, которые чувствительны к концентрации, отличается от поведения образца. На их вибрационную прочность оказывают большое влияние не только такие концентраторы, как надрезы, входящие углы и т. д., но также в большой мере шероховатость и вообще состояние поверхности. Кроме того, оказывается, что прочность крупных изделий отличается от прочности подобных по форме, но более мелких, так как они имеют разное отношение поверхности и площади поперечного сечения, о связано с тем, что поверхностный слой получается упрочненным в результате действия технологических операций. Поэтому мелкие изделия оказываются относительно прочнее крупных. Это обстоятельство учитывают введением так называемого масштабного фактора е .  [c.174]

Наиболее целесообразно применять выглаживание для достижения шероховатости поверхности 10-го класса и выше. Рекомендуемая исходная шероховатость — 7—8-й классы. При выглаживании происходит упрочнение поверхностного слоя на глубину 0,5—1,5 мм со степенью наклепа 15—200%.  [c.448]

Евдокимов Ю. А. Влияние шероховатости поверхности трения и упрочнения стали наклепом на антифрикционные свойства пары металл — пластмасса.— Сб, Применение материалов на основе пластмасс для опор скольжения и уплотнений в машинах . М., Наука , 1968, стр. 74—76.  [c.104]

Величина предела выносливости зависит не только от состава, структуры, режима термической и механической обработки, поверхностного упрочнения, температуры испытания, но и от размеров образцов, вида напряженного состояния, наличия концентраторов напряжений, состояния поверхности образца, ее шероховатости, среды испытания, контакта с другими деталями и т. д. Все это усложняется тем, что при испытании на усталость наблюдается существенное рассеяние характеристик выносливости.  [c.7]

Зависимость шероховатости поверхности, упрочненной лазерным излучением, от схемы обработки и направления измерения  [c.77]

Вид схемы упрочнения также влияет на микрорельеф обработанной поверхности. В частности, минимальная шероховатость характерна для схемы, показанной на рис. 38, а, максимальная — для схем на рис. 38, в, г.  [c.78]


Из анализа приведенных данных можно сделать вывод о том, что для получения упрочненной поверхности с минимальной шероховатостью обработку целесообразно выполнять при 0,6 > /Сп > > 0,8. Экспериментальные исследования также показали, что, помимо коэффициента перекрытия, на высоту микронеровностей большое влияние оказывает также изменение плотности мощности в пятне фокусирования лазерного излучения, причем, наименьшая высота неровностей и, следовательно, наилучшее качество упрочненной поверхности достигается при невысоких плотностях мощности (для стали, например, при (7 = (5...10)- 10 Вт/см ). Однако, как было показано выше, при сравнительно малых q обеспечиваются небольшие размеры зоны упрочнения. Поэтому оптимальную величину плотности мощности нужно выбирать так, чтобы зона упрочнения имела по возможности большие размеры.  [c.78]

Подача. Для уменьшения машинного времени, т. е. повышения производительности труда, целесообразно работать с максимально возможной подачей с учетом факторов, влияющих на ее величину. При грубой обработке, когда шероховатость, упрочнение и точность обработанной поверхности не являются определяющими, но силы, действующие в процессе резания, могут быть значительными, максимальную величину подачи могут ограничивать прочность и жесткость режущего инструмента (державки, пластинки), жесткость заготовки, прочность деталей механизма подачи и деталей механизма главного движения станка. Подача обычно назначается из таблиц справочников по режимам резания, составленных на основе специально проведенных исследований и опыта работы машиностроительных заводов. Так, при черновом наружном точении чугуна обычным (ф1 > 0) резцом с пластинкой из твердого сплава (сечение державки 20x32 мм, диаметр заготовки 100 мм, глубина резания до 5 мм) рекомендуемая подача Smax = 1,2 мм/об.  [c.128]

Обработка отверстий деформирующими протяжками в деталях машин получает в последнее время все большее распространение в связи с применением для изготовления рабочих элементов протяжек металлокерамических твердых сплавов, обладаюш,их высокой износостойкостью, В процессе деформирующего протягивания могут осуществляться как малые (поверхностные), так и большие (сквозные) пластические деформации, при которых диаметр отверстия увеличивается на 10—20%. В последнем случае пластические деформации распространяются на всю толщину стенки детали и изменяют наряду с диаметром отверстия длину детали и ее наружный диаметр. Указанные деформации определяют лишь изменение размеров детали. В зоне контакта деформирующего инструмента с обраба тьшаемым металлом, кроме названных, возникают дополнительные сдвиговые деформации, величина которых может исчисляться сотнями процентов. Именно эти деформации формируют поверхностный слой, который определяет качество обработанной поверхности (шероховатость, упрочнение, остаточные напряжения, износостойкость, обрабатываемость и т. д.). При значительных деформациях могут возникнуть нарушения сплошности, надрывы, разрушения и другие явления, нежелательные с точки зрения прочности и износостойкости деталей. В связи с этим нужно иметь сведения о влиянии различных факторов режима деформирующего протягивания на качество поверхностного слоя обработанных деталей. Систематизированных сведений по этим вопросам почти нет.  [c.3]

Были проведены Исследования влияния схемы деформирования на износостойкость поверхности при изменении натягов на один деформирующий элемент и суммарных натягов (числа циклов) в широких пределах. Предполагалось также выделить отдельно влияние шероховатости, упрочнения и остаточных напряжений на износостойкость поверхностей, обработанных режущим инструментом и деформирующими протяжками. Сравнительные испытания износостойкости втулок, обработанных растачиванием и на различных режимах деформирующего протягивания, производились в условиях граничного трения при вращательном и возвратно-поступательном относительных движениях трущихся пар на скорости V = 0,3 м сек. Удельные нагрузки изменялись от 25 до 50 кПсм . Смазка осуществлялась веретенным маслом (индустриальное 12).  [c.145]

Рис. 60. Зависимость износа ЭИ Да (анода) привеса заготовки Дк (катода), коэффициента переноса Кп(а), шероховатости упрочненной поверхности Ка и суммарного привеса катода Е Дк (б) от времени т ЭЭУ поверхности площадью 1 см2 стали Р65М ЭИ из твердого сплава Рис. 60. Зависимость износа ЭИ Да (анода) привеса заготовки Дк (катода), коэффициента переноса Кп(а), шероховатости упрочненной поверхности Ка и суммарного привеса катода Е Дк (б) от времени т ЭЭУ поверхности площадью 1 см2 стали Р65М ЭИ из твердого сплава
Малой шероховатости поверхности н ее упрочнения можно достичь алмазным выглаживанием. Сущность этого метода состоит с том, что оставшиеся после обработки резанием неровности поверхности выглаживаются перемеш,аюш,имся по ней прижатым алмазным инструментом. Алмаз, закрепленный в державке, не вращается, а скользит с весьма малым коэффициентом трения. Рабочая часть инструмента пыполнена в виде полусферы, цнлиндра или конуса. Чем тверже обрабатываемый металл, тем меньше радиус скругле-ния рабочей части алмаза.  [c.387]

Для конструктивного оформления любс го вала необходимо подобрать детали, сопрягаемые с ним, чтобы установить диаметры ступеней валов и их длины, размеры шпо ючпых пазов и шлицев, конструктивные виды галтелей, канавок и др. Кроме того, необходимо назначить шероховатость поверхносей и характер посадок деталей на валах, вид упрочнения и термообработки, т. е. показатели, необходимые для последующего расчета валов на выносливость.  [c.313]

Для предотвращения пластических микродеформаций целесообразно применять подкладные шайбы большого диаметра. Резьбу, опорные поверхности шайб, гаек, головок болтов, а тадже поверхности стыков рекомендуется обрабатывать не ниже 6-го класса шероховатости и обеспечивать строгую перпендикулярность опорных поверхностей относительно оси болтов. Болты следует затягивать регламентированным усилием. Соединения рекомендуется подвергать предварительной осадке путем затяжки болтов под напряжением, близким к пределу текучести материала, с целью расплющивания микронеровностей в резьбе и на опорных поверхностях и деформационного упрочнения материала болтов.  [c.444]

Современные расчеты на сопротивление усталости отражают характер изменения напряжений, характеристики сопротивления усталости материалов, концентрацию напряжений, влияние абсолютных размеров, шероховатости поверхности и поверхностного упрочнения. Расчет обычно производят в форме проверки коэффициента запаса прочности по усталости. Для расчс .та необходимо знать постоянные а , и Тт и переменные а<, и Та составляющие напряжений. Коэффициент запаса прочности определяют по уравнению  [c.324]

Гланной целью механической обработки деталей машин является ги)лучснис заданной геометрической формы, точности заданных размерен и шероховатости поверхностей. Однако в процессе механической обработки развиваются большие удельные усилия, металлы и сплавы в зоне обработки пластически деформируются и упрочняются, значительно повышается температура деформируемых слоев и изменяется их структура. Данные о степени упрочнения (наклепа) поверхностного слоя при основных технологических операциях обработки металлов приведены в табл. 2.3.  [c.48]


В настоящее время имеется несколько гипотез, объясняющих влияние предварительного упрочнения на износоустойчивость. По данным работы [37], предварительное упрочнение уменьшает износ за счет деформации смятия и за счет истирания микронеровностей на контакте. Как считают авторы [43] и [101], предварительное упрочнение пластической деформацией способствует диффузии кислорода воздуха в металле и образованию в нем твердых химических соединений РеО, РегОз, Рсз04 в результате окислительного изнашивания, происходящего с ничтожно малой интенсивностью. Согласно гипотезе [109] упрочнение поверхностного слоя рассматривается как средство повышения жесткости поверхностных слоев и уменьшения взаимного внедрения при механическом и молекулярном взаимодействии. На этот счет существуют и другие теории. Так, например, по мнению А. А. Маталина [64], главным фактором, определяющим износоустойчивость, является величина остаточных напряжений после приработки изделий. Между микротвердостью поверхностного слоя и его износоустойчивостью имеется определенная связь в процессе изнашивания микротвердость поверхностных слоев после приработки стремится к оптимальному значению однако в силу одновременного влияния разнообразных факторов (шероховатость поверхности, напряженное состояние поверхностного слоя и пр.) эта связь имеет только качественный характер и не может быть использована для практических расчетов.  [c.14]

Очень широко в настоящее время начинают применять гидро- или пневмодинамические методы ППД дробью, макро- или микрошариками (стальными или стеклянными). Иногда для этой операции применяют молотки с многобойковыми упрочнителями. Последний метод значительно улучшает условия труда. Начали применять ППД специальными металлическими щетками со сферическими концами проволочек или без них. Все эти виды ППД основаны на том, что упрочнение или наклеп достигаются энергией многократных и многочисленных ударов шариков или концов проволочек. Подбирая скорость соударения, массу шариков и их диаметр, можно получить разные значения глубины наклепа и напряжений сжатия, а также шероховатости поверхности. Ценность этих методов — в широких возможностях ППД самых различных геометричес-  [c.199]

Считают, что второй пер,иод связан с интенсивным образованием вакансий и их оттоком в субмикроско-пические нарушения сплошности. С появлением субми-кроскопических трещин плотность дислокаций уменьшается и, следовательно, облегчается движение доменных границ. Поэтому если в первом периоде магнитная проницаемость снижается, а электрическая проводимость не изменяется, то во втором периоде магнитная проницаемость увеличивается, а электрическая проводимость снижается. В третьем периоде субмикроскопические трещины перерождаются в микротрещины. При этом движение доменных границ еще больше облегчается, что вызывает увеличение магнитной проницаемости. При увеличении напряжений плотность образующихся полос скольжения выше и поэтому трещины появляются раньше. Важным предшественником их появлеиия является возникновение на поверхности детали шероховатости. На процесс упрочнения при начальных стадиях зарождения трещины оказывает влияние большое число факторов (вид нагружения, способ задания нагрузки, уровень нагружения, асимметрия цикла и т. д.). Общая долговечность образца с увеличением его размеров уменьшается,  [c.160]


Смотреть страницы где упоминается термин Шероховатость Упрочнени : [c.78]    [c.80]    [c.564]    [c.94]    [c.136]    [c.325]    [c.103]    [c.217]    [c.388]    [c.197]    [c.198]    [c.5]    [c.17]    [c.88]    [c.78]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.25 ]



ПОИСК



Обработка термомеханическая средства 555 - Влияние на эксплуатационные свойства деталей 560 - Износостойкость 561 - Инструмент и приспособления 556 - Глубина упрочнения 558, 559 - Параметры шероховатости 560 - Применение 562 - Режимы

Упрочнение

Упруго-пластическое (без упрочнения) контактирование шероховатой поверхности с жесткой плоскостью

Шероховатость поверхности при доводке внутренних цилиндрических поверхностей и упрочнении

Шероховатость поверхности при и упрочнении



© 2025 Mash-xxl.info Реклама на сайте