Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивоспособность

Второй раздел включает описание общих требований, предъявляемых к показателям надежности, - имеется в виду необходимость исполь зования их численных значений для формирования тех или иных уп равляющих решений, а также структуры показателей надежности Дается 2.2- 2.4) формализованное описание единичных и комплекс ных показателей надежности. В числе единичных показателей надеж ности рассматриваются также такие показатели, которые служат для численной оценки единичных свойств устойчивоспособности, режимной управляемости, живучести и безопасности. В число комплексных показателей надежности включены также показатели, служащие для оценки суммарного выходного эффекта системы, - показатели эффективности функционирования системы. Кроме того, приводятся некоторые соображения о выборе тех или иных показателей надежности для формирования различных решений по обеспечению надежности СЭ ( 2.5).  [c.13]


Единичные свойства надежности. Надежность является комплексным свойством объекта, которое в зависимости от назначения объекта, условий его эксплуатации, рассматриваемого территориального или временного уровня иерархии управления может включать несколько единичных свойств. Основными единичными свойствами объектов энергетики является 170] безотказность, долговечность, ремонтопригодность, сохраняемость, устойчивоспособность, режимная управляемость, живучесть и безопасность. Наиболее общим среди единичных свойств является безотказность, что поясняется в п. 1.2,3.  [c.45]

Рассматриваемое свойство характеризует надежность системы, но не элемента. Практически свойство устойчивоспособности, как и состояние устойчивости, в исследованиях надежности используется применительно к ЭЭС. Однако если вдуматься в содержание этих двух понятий, то можно увидеть их применимость и к ТПСЭ.  [c.47]

Этим понятием часто обозначают свойство надежности объекта, но не вообще, а в экстремальных условиях, характеризуемых крупными возмущениями. В данном случае понятие живучести связывается не с величиной возмущений, й с величиной их последствий -возможностями объекта не допускать крупного (массового) нарушения питания потребителей при любых возмущениях - больших и малых. Понятно, что как и устойчивоспособность, живучесть характеризует надежность системы, а не элемента.  [c.47]

Необходимость введения дополнительных по отношению к ГОСТ 27.002-89 единичных свойств - устойчивоспособности, режимной управляемости (управляемости), живучести и безопасности -определяется специфическими особенностями СЭ (см. п. 1.1.6) и может быть проиллюстрирована следующим примером [70,94]. Система энергетики может иметь низкую надежность при высоких уровнях безотказности, долговечности, ремонтопригодности и сохраняемости ее элементов, если при некоторых (пусть редких) их отказах с большой вероятностью нарушается устойчивость системы, приводящая в свою очередь с большой вероятностью к каскадному развитию аварии с массовым нарушением питания потребителей. В такой системе большая вероятность нарушения устойчивости при отказах - признак низкой устойчивоспособности, а большая вероятность каскадного развития аварии при всяком нарушении устойчивости - признак низкой живучести. Плохие устойчивоспособность и живучесть могут, в частности, обусловливаться недостаточной управляемостью. Надежность системы может быть низкой также вследствие значительной вероятности поражения людей и окружающей среды при всяком отказе объекта, даже если эти отказы редки, т.е. при низкой безопасности.  [c.48]

При формировании решений, направленных на обеспечение выполнения системой функций бесперебойного снабжения потребителей соответствующей продукцией, но с большой перспективой, часто в силу недостаточной достоверности используемой информации нет необходимости в анализе нестационарных процессов, которыми сопровождаются первичные возмущения. В этом случае иногда рассматривают обеспечение надежности системы, обуславливаемой только свойствами ремонтопригодности и безотказности. Нестационарные процессы при возмущениях в системе и, следовательно, надежность системы, характеризуемая кроме ремонтопригодности и безотказности в общем случае также устойчивоспособностью, управляемостью и живучестью, обычно рассматриваются при формировании решений с малой перспективой (на стадии конкретного технического проекта).  [c.50]


Как отмечалось в п. 1.2.3, в зависимости от параметров рассматриваемого объекта, заблаговременности выработки и состава принимаемых решений по обеспечению его надежности надежность объекта может быть охарактеризована различным сочетанием единичных свойств надежности. Фактически это означает различную полноту моделирования явлений и процессов, характеризующих поведение объекта при различных первичных возмущениях. Учет таких единичных свойств надежности, как устойчивоспособность, управляемость, живучесть и безопасность (как по отдельности, так и в различных комбинациях), может приводить к необходимости доопределять понятия всех видов отказов как работоспособности, так и функционирования конкретным указанием того свойства, неполнота проявления которого с ним связана, т.е. рассматривать отказы по устойчиво-способности, по управляемости, по живучести, по безопасности (см. п. 1.2.3), например частичный отказ работоспособности по живучести.  [c.62]

Что касается таких общетехнических единичных показателей надежности, как показатели долговечности и сохраняемости, то достаточно обоснованных методов их расчета до настоящего времени не разра ботано, а опытная проверка сопряжена с длительными и трудоемкими испытаниями и фактически не проводится. Численные значения этих показателей определяются либо на основе ретроспективной информации, либо с привлечением экспертных оценок. Еще более сложным является вопрос о показателях, определяющих единичные свойства надежности, характерные для СЭ (устойчивоспособность, управляемость, живучесть и безопасность), в силу недостаточного опыта их использования.  [c.84]

О показателях устойчивоспособности, режимной управляемости, живучести и безопасности. Специальные свойства СЭ устой- <ивоспособность, режимная управляемость, живучесть и безопасность - могут быть охарактеризованы показателями, которые по смыслу близки к уже рассмотренным. Однако для каждого из них формулируется некоторый критерий, по которому все состояния СЭ делятся на два класса - удовлетворяющие этому критерию и не удовлетворяющие ему. Неудовлетворение выбранному критерию представляет собой отказ. В общем случае состояния СЭ могут быть разделены на более чем два класса (используя понятия частичных отказов).  [c.92]

Наиболее сложным вопросом при расчете соответствующих показателей надежности для свойств устойчивоспособность, режимная управляемость, живучесть и безопасность - является выбор критериев отказа. Кроме того, в настоящее время очень мал опыт по, использова-нию подобных ПН на практике, требования к надежности с точки зрения этих свойств формулируются в основном на качественном уровне. Однако необходимость количественного оценивания ладежности по этим свойствам не вызывает сомнения.  [c.93]

Первый предполагает возможность вместо вычисления тех или иных показателей надежности как вероятностных величин, отражающих последствия совокупности различных случайных возмущений, исследовать поведение системы при экспертно выбираемых (наиболее крупных) возмущениях, влияющих на ее надежность (безотказность, устойчивоспособность, режимную управляемость, живучесть, безопасность), для нескольких вариантов и условий ее работы К Логика использования этого пути основывается на том, что при большой заблаговременности масштабы применения средств обеспечения надежности, например резервов и запасов, необходимые для компенсации рядовых возмущений, значительно меньше диапазона значений вводимых мощностей (производительностей) оборудования и запасов знергоресурсов, который является следствием неопределенности исходной информации. При снижении уровня заблаговременности и соответственно уменьшении неопределенности информации об исходных условиях, когда требуемые значения резервов и запасов (и других средств обеспечения надежности) для компенсации рядовых возмущений оказываются соизмеримыми с диапазоном соответствующих величин, обусловленным неопределенностью исходной информации, осуществляется формирование решений, опирающихся на вычисление показателей надежности как вероятностных величин.  [c.143]

Иллюстрировать целесообразность или возможность применения нормативов при сложных процессах функционирования систем можно на примере ЭЭС [93]. При определении показателей надежности (ПН) ЭЭС (скажем, показателей, учитывающих глубину отказов, или показателей устойчивоспосоЬности) рассматриваются ее случайные состояния, определяемые случайными состояниями ее элементов. В числе случайных состояний системы могут быть такие, когда возможно нарушение ее статической или динамической устойчивости. Последствия таких состояний должны быть учтены в численных значениях ПН. Однако это означает, что при каждом таком случайном состоянии системы (характеризуемом соответствующей вероятностью) должен быть выполнен расчет статической или динамической устойчивости. Трудоемкость таких расчетов с учетом их массовости очень велика. Поэтому, как правило, статическая и динамическая устойчивость учитывается в расчетах надежности нормативными запасами устойчивости, а расчеты динамической устойчивости, кроме того, выполняются не при всех возможных, а лишь при расчетных, т.е. нормативных, возмущениях. Это означает, что в ПН, характеризующих глубину отказов, последствия нарушений устойчивости либо не учитываются, либо учитываются приближенно, а показатели устойчивоспособности не вычисляются.  [c.383]



Смотреть страницы где упоминается термин Устойчивоспособность : [c.46]    [c.47]    [c.49]    [c.93]    [c.464]    [c.470]   
Надежность систем энергетики и их оборудования. Том 1 (1994) -- [ c.46 , c.47 , c.48 ]



ПОИСК



Отказ по устойчивоспособности

Показатель устойчивоспособности



© 2025 Mash-xxl.info Реклама на сайте