Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

367 — Суть процесса, используемые формы

Изменение энтропии в левой части выражения (3.50), разумеется, не зависит от процесса, для которого вычисляется правая часть и который может быть обратимым (произвольной формы) или необратимым. При вычислении 32—51 используется удобный для расчета обратимый переход из состояния 1 в состояние 2, составляемый из двух процессов [см. формулы (3.22), (3.31),  [c.72]

Предположим, например, что неоднородный материал создается из двух различных порошкообразных металлов. При изготовлении образцов для каждого из них задаются одинаковые объемные доли, порошки прессуются в одинаковых пресс-формах, причем для прессования и для управления процессом используется одинаковое оборудование. Полученные образцы макроскопически идентичны, однако при тщательном их исследовании обнаруживается, что в разных образцах распределение материала по объему может быть совершенно различным. Созданный таким образом набор образцов называется ансамблем.  [c.249]


Закономерности развития процессов схватывания первого и второго рода, полученные на образцах в лабораторных условиях, не могут быть прямо использованы при конструировании и изготовлении деталей реальных машин, имеющих отличную от образцов форму и размеры. Как известно, размеры и форма трущихся сопряженных пар оказывают большое влияние на закономерности развития тех или иных процессов на поверхности трения. В одних и тех же условиях трения в сопряженных парах различной величины и формы могут возникать и развиваться с различной интенсивностью те или иные процессы, а следовательно, интенсивность и характер изнашивания могут быть различными.  [c.90]

Для гармонич, процессов, используя комплексную запись зависи.мости от времени (I=1, ы — круговая частота), можно придать (3) форму (2), если заменить на соответствующий комплексный импеданс Z Л ->2 =г(о/. +й -1-(г ())С )-1. С определ. оговорками К. п. могут быть обобщены на цени, содержащие нелинейные элементы.  [c.370]

Некоторые практические затруднения при использовании методов обобщенного анализа вызывает то обстоятельство, что чем сложнее рассматриваемая задача (т. е. чем больше размерных параметров используется для описания изучаемого процесса), тем больше может быть получено разнообразных форм безразмерных комплексов. Неоднозначность этих форм усложняет сравнение результатов, полученных различными авторами, и задерживает разработку единых нормативных документов на представление характеристик приборов (или других функциональных элементов) в обобщенном виде. На основе современного системного подхода к описанию процессов автором разработана некоторая стандартная процедура определения безразмерных комплексов — координат обобщенных характеристик измерительных преобразователей, впервые систематически описываемая в данной книге.  [c.4]

При разработке технологических процессов должна быть широко использована творческая инициатива новаторов социалистического производства проектирование технологических процессов должно закреплять практические достижения социалистических форм труда и ориентироваться на дальнейшее их распространение.  [c.22]

Необходимо отметить, что геометрия рассматриваемых камер такова, что в ряде случаев она может быть реализована только при организации серийного производства нового газового двигателя. В условиях конвертации находящихся в эксплуатации двигателей при расточке поршней необходимо учитывать наличие уже имеющейся камеры сгорания. Наиболее распространенные в нашей стране двигатели транспортного назначения производства ОАО "КамАЗ" и ОАО "Автодизель" имеют такую форму камеры, которая позволяет при реализации газового процесса использовать цилиндрическую или близкую к ней геометрию. Поэтому основное внимание в дальнейшем будет уделено именно таким камерам.  [c.44]

Формирование металла шва при электрошлаковой сварке является важным технологическим фактором. Применяемые в обычной практике медные охлаждаемые ползуны, перемещающиеся одновременно со сварочной ванной, можно использовать только для прямолинейных швов большой протяженности. Для сварки швов малой протяженности, а также при сварке валов, колонн и изделий сложной конфигурации могут быть применены остающиеся стальные накладки, заранее приваренные (прихваченные) к изделию. Удобными являются керамические формы, которые заранее крепятся на детали. Эти формы могут быть изготовлены из песчаной смеси, скрепленной жидким стеклом, огнеупорных плит, шамотного или динасового кирпича. В основание формы закладывается стальная плита, которая должна иметь надежный контакт со свариваемой деталью или сварочным кабелем (см. рис. 6). Между плитой и изделием делается зазор, необходимый для начала шлакового процесса. Керамические формы одноразового применения очень удобны для ремонтных работ. Перед сваркой форма должна быть тщательно просушена до полного удаления влаги. Утечка жидкого металла из ванны неизбежно прерывает процесс сварки, в результате чего всю работу приходится выполнять заново.  [c.44]


Процесс основан на использовании в качестве связующих материалов синтетических смол для пластичных смесей, способных отверждаться при комнатной температуре за счет катализаторов. Пески используются обогащенные или природные тех же классов и зернистости, что и в процессах изготовления форм и стержней по нагреваемой оснастке, причем pH должна быть в пределах 5,0- ,5. Температура песка перед употреблением должна быть 15—25° С, влажность — не более 0,2%. В качестве добавки в стержневые смеси для предотвращения газовой пористости на поверхности отливок иногда используется (до 1%) окись железа (МРТУ МХП 6-10-602—68).  [c.450]

Сжатой дугой можно сваривать практически все металлы в нижнем и вертикальном положениях. В качестве плазмообразующего газа используют аргон и гелий, которые также могут быть и защитными. К преимуществам плазменной сварки относятся высокая производительность, малая чувствительность к колебаниям длины дуги, устранение включений вольфрама в металле шва. Без скоса кромок можно сваривать металл толщиной до 15 мм с образованием провара специфической грибовидной формы, что объясняется образованием сквозного отверстия в основном металле, через которое плазменная струя выходит на обратную сторону изделия. По существу, процесс представляет собой прорезание изделия с заваркой места резки. Плазменной струей сваривают стыковые и угловые швы. Стыковые соединения на металле толщиной до 2 мм можно сваривать с отбортовкой кромок, при толщине свыше 10 мм рекомендуется делать скос кромок. В случае необходимости используют дополнительный металл.  [c.85]

Природа повсюду использует волновые процессы. Известно, что множество галактик нашей Вселенной имеет хорошо различимые спиральные рукава. Спиральная форма естественным образом получается при раскручивании вещества из какого-либо центра. Моделирование процесса возникновения спиральных галактик показало, что, учитывая время их существования, все вещество в них должно бьшо бы давно быть отброшенным на периферию. Однако, их спиральная форма устойчиво существует до сих пор. Было выдвинуто предположение, что спиральные рукава являются не материальными образованиями, а всего лишь волнами плотности вещества, испускаемыми из центра. Впоследствии эта, казалось бы, безумная мысль, нашла свое подтверждение.  [c.139]

Природа повсюду использует волновые процессы. Известно, что множество галактик нашей Вселенной имеет хорошо различимые спиральные рукава. Спиральная форма естественным образом получается при раскручивании вещества из какого-либо центра. Моделирование процесса возникновения спиральных галактик показало, что, учитывая время их существования, все вещество в них должно было бы давно быть отброшенным на периферию. Однако их спиральная форма устойчиво существует до сих пор. Было  [c.339]

Оболочковые формы с жидким наполнителем. При заполнении пространства между оболочкой и опокой наполнитель находится в полужидком состоянии, в связи с чем этот процесс получил название формовки с жидким наполнителем (см. рис. 104, б). Наполнитель приобретает прочность после схватывания (твердения) связующего материала и высокотемпературной сушки. В качестве огнеупорного наполнителя могут быть использованы кварцевый песок, шамотный бой, а связующим является глиноземистый цемент. Однако данная технология не является перспективной, так как имеет определенные недостатки.  [c.202]

Сопоставление результатов обработки экспериментальных данных на основе формулы (11.29) по теплоотдаче при свободном и вынужденном движении позволяет заключить, что эта формула в основном правильно отражает влияние температурного скачка на процесс теплообмена. Об этом свидетельствует стабильность величины Ф, которая для различных условий течения воздуха и разных форм тел имеет почти одинаковое значение. Поэтому для приближенных расчетов формула (И.29) может быть использована и для тел, теплоотдача которых в разреженном газе не исследовалась. Следует, одна-  [c.402]

Так как в теоретическом цикле температура рабочего тела в процессе подвода теплоты всегда меньше температуры теплоотдатчика (например, горячих продуктов сгорания), то во всех случаях целесообразно, если только к тому имеется возможность, отдельные участки процесса нагрева рабочего тела проводить при возможно более высокой температуре. Также целесообразно использовать теплоту отходящих продуктов сгорания для первоначального нагревания рабочего тела на начальном участке цикла, когда температура рабочего тела ближе к температуре окружающей атмосферы. Из сказанного ясно, что оптимизация теоретического цикла состоит в таком изменении цикла, чтобы, во-первых, средняя температура подвода теплоты в цикле оказалась возможно более высокой, приближающейся к предельно допустимой для данной конструкции двигателя величине, а средняя температура отвода теплоты была бы возможно более низкой, приближающейся к температуре окружающей атмосферы во-вторых, конфигурация никла была бы по возможности близкой к форме обобщенного цикла Карно. В какой мере каждая из этих возможностей может быть реализована, зависит от конкретных условий.  [c.525]


Изложенные опытные наблюдения позволяют использовать модель пузырька, представленную на рис. 6.11. Будем считать, что пузырек в процессе роста сохраняет форму усеченной сферы, причем очертания пузырька в любой момент времени геометрически подобны. Это означает, что все геометрические характеристики пузырька могут быть представлены как величины, пропорциональные радиусу эквивалентной по объему сферы  [c.266]

Вывод о существовании энтропии 5 и абсолютной температуры Т как термодинамических функций состояния любых тел составляет основное содержание второго начала термодинамики (по терминологии Н. И. Белоконя — второго начала термостатики). Математическое выражение в форме равенства 6Q= 8Q +6Q = TdS распространяется на любые процессы — обратимые и необратимые. В качестве постулата для вывода этого закона может быть использовано утверждение, что температура есть единственная функция состояния, определяющая направление самопроизвольного теплообмена между телами, т. е. между телами и элементами тел, не находящимися в тепловом равновесии, невозможен одновременный и самопроизвольный (по балансу) переход теплоты в противоположных направлениях — от тел более нагретых к телам менее нагретым и обратно [7]. Из этого постулата вытекает ряд важных следствий о невозможности одновременного осуществления полных превращений теплоты в работу и работы в теплоту (следствие 1), о несовместимости адиабаты и изотермы (следствие 2), теорема о тепловом равновесии тел (следствие 3) [7].  [c.57]

Зная теперь плотность теплового потока, используют уравнение (5.5) для определения температурного поля. Результат вычислений по (5.5) получится в виде x=x t) т. е. температурное поле определяется в неявной форме. Операции интегрирования в (5.5) и (5.6) в случае сложной зависимости % t) могут быть достаточно трудоемкими. Именно эти операции и выполняет, в частности, АВМ МН-7М, с помощью которой в лабораторной работе моделируется рассматриваемый процесс.  [c.209]

Уравнение энергии описывает процесс переноса теплоты в материальной среде. При этом ее распространение связано с превращением в другие формы энергии. Закон сохранения энергии применительно к процессам ее превращения формулируется в виде первого закона термодинамики, который и является основой для вывода уравнения энергии. Среда, в которой распространяется теплота, предполагается сплошной она может быть неподвижной (например, массив твердого тела) или движущейся (например, капельная жидкость или газ, в дальнейшем для них будет использоваться общий термин— жидкость). Поскольку случай движущейся среды является более общим, используем выражение первого закона термодинамики для потока (см. 18)  [c.265]

Если приложить внешнее давление, то графитизация может быть прекращена (Po = Pt г>г=0). Такое влияние внешнего давления можно использовать для получения графита шаровидной формы в чугуне с большим значением углеродного эквивалента. Для этого надо подавить процесс графитизации во время кристаллизации отливок, а затем произвести их кратковременный отжиг, длительность которого будет тем меньше, чем больше содержание углерода и кремния в чугуне. При этом внешнее давление при кристаллизации расплава должно быть равным или несколько больше того давления, которое возникает в металлической матрице в связи с ростом включений графита [49].  [c.36]

Учет рассеивания параметров механизма. При суммировании износов звеньев механизма необходимо учитывать дисперсию процесса изнашивания, а также рассеивание размеров звеньев механизмов, если рассматривается их совокупность. Последнее связано с технологическими допусками на размеры и форму изделий. Поэтому, как это указывает акад. Н. Г. Бруевич [18, первичная ошибка каждого звена складывается из погрешности его изготовления (случайная величина для данного типа механизмов и неслучайная— для конкретного экземпляра) и из изменения её в процессе изнашивания [см. формулу (17) гл. 4, п. 3]. При оценке изменения работоспособности многозвенного механизма при износе его звеньев часто возникает необходимость определения не только средних значений изменения положения ведомого звена, но и дисперсии или пределов изменения значения А. В этом случае алгебраическое сложение должно заменяться вероятностным. При независимости износов используется соответствующая теорема сложения дисперсий, а поле рассеивания (размах) значений А может быть подсчитано как корень квадратный из суммы квадратов соответствующих размахов первичных ошибок звеньев. Если известны законы рассеивания первичных ошибок, то могут быть использованы зависимости, применяемые в технологии машиностроения для расчета погрешностей сборки механизмов.  [c.341]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

Используя вышеприведенные обоснования того, что некоторые профили усталостных бороздок характерны для финальной части стабильного роста трещины, а также другие признаки процессов деформации разрушения материала с разной интенсивностью, можно провести предварительную селекцию профилей бороздок (механизмов разрушения материала) и отнести к начальной или конечной фазе развития трещины на II стадии. Это вполне обосновано в том случае, когда точного профиля бороздки нет, а есть только морщинистая поверхность [135, 142], отвечающая процессу затупления вершины трещины. Вместе с тем, хотя пластическое затупление типично для нагружения материала при положительной асимметрии цикла, оно не наблюдается в слз ае циклов с высокой отрицательной асимметрией, когда минимальное напряжение цикла отрицательно по знаку и является сжимающим [140]. Переход от пульсирующего цикла нагружения к асимметричному циклу со сжимающим напряжением не меняет треугольной формы профиля бороздки с гладкой поверхностью, но сама величина шага возрастает при указанном переходе. Причем наиболее значительное возрастание имеет именно та часть профиля бороздки, которая обращена к предыдущей бороздке, сформированной при пульсирующем цикле нагружения. Такая ситуация при формировании усталостных бороздок может быть объяснена только в том случае, если принять во внимание возможность формирования части профиля усталостных бороздок на нисходящей ветви нагрузки (в полу-цикле разгрузки материала).  [c.165]


Представленная в табличной форме (табл. 5.4), ЕКД характеризует поведение сплавов не только в условиях проведения испытаний, которые являются лабораторными с заданными (тестовыми) условиями опыта. Она является характеристикой свойства материала сопротивляться внешней циклической нагрузке при многообразии условий внешнего воздействия, поскольку реализация одного и того же кинетического процесса между двумя соседними точками бифуркации характеризуется одинаковыми величинами КИН при достижении одинаковых величин скорости роста усталостной трещины. Корректное определение величины эквивалентного КИН для условий многофакторного воздействия приводит к представленной выше в табличной форме ЕКД. Вместе с тем сама ЕКД может быть использована в качестве эталона, к которому могут быть приведены получаемые в испытаниях кинетические кривые. В случае постоянного влияния параметра воздействия  [c.253]

АПМП может ставить ряд вопросов, которые должны быть разрешены. Следовательно, возникает необходимость в справочных или консультационных разумных машинах. Они должны иметь систематизированные знания, охватываюш ие круг заданных вопросов, а для технического решения проблем обш епия должны характеризоваться оперативностью и быстродействием, достоверностью (безошибочностью), коммутабильностью и эстетикой (печатная форма ответа, достаточно полная, обстоятельная, на требуемом языке и т. д.). В справочных и консультационных машинах должен быть заложен как активная процедура метод дедукции. Нужно умело расчленять основную задачу на подзадачи, которые должны быть доказаны отдельно. Однако при искусственном интеллекте возникают технические проблемы как создать надежные логические устройства, как создать автоматический декомпозитор и контроллер программной декомпозиции. Центральным принципом в доказательстве теорем при искусственном интеллекте должна быть формализованная дедукция процесса, использующая язык предикативной логики. Важность этого раздела подчеркивается тем, что сам метод доказательства теорем может быть распространен на многие задачи АПМП, если их сформулировать в виде теорем.  [c.80]

Запись характеристик результатов можно вести в абсолютных показателях (когда требования к результатам выражены количественно) или в выбранной системе условных баллов. Если таблица по приведенной форме содержит достаточно большое количество строк, то она представляет собой одну из форр описания процесса. Данные таблицы могут быть непосредственно использованы для управления процессом. В самом деле если известно состояние входных параметров процесса, то, отыскав эту комбинацию величин параметров в таблице и убедившись по графе Оценка качества , что такой комбинации соответствует положительный результат, можно в графе Действия рабочего в той же строке найти положения управляющих органов, обеспечивающие этот результат.  [c.127]

Вследствие близости результатов при разных петлях гистерезиса можно воспользоваться некоторой усредненной функцией Ф (г), что позволяет определить диссипативные факторы при отсутствии достоверных сведений о форме петли гистерезиса, реализуемой в конкретной системе. Графики Фх, Ф2 могут быть также использованы для инженерных оценок в тех случаях, когда колебательный процесс отличается отбигармонн-ческого.  [c.150]

При решении этой задачи могут быть использованы две характерные формы построения техно югического процесса первая форма базируется на дифференциации, вторая — на концентрации операций и переходов.  [c.51]

Принцип неологии (от лат. знание нового, новизна) — это использование разработчиком процессов, конструкций, форм, материалов, ИХ свойств и др., новых для данной отрасли техники или новых вообще. Предполагается, что запланированная вне данной отрасли теЗсни-ческая система уже создана, успешно используется (хотя, может быть, и для совершенно иных целей), и надо только ее разыскать и проверить в данных условиях, не изменяя и не приспосабливая ее. Ясно, что принцип неологии требует от проектанта широкой инженерной культуры.  [c.176]

Приращения функций, не являющиеся полными дифференциалами, могут быть преобразованы в полные дифференциалы с помощью интегрирующего множителя. Таковым по аксиоматическому определению в термодинамике является температура в. Как множитель она участвует II обратной форме МО. С её помощью процесс обмена информацией с окружением может быть представлен в форме полных ди( )ференциалов. Например, используя температуру в виде Мв как штегрирующий М1южитель, можно на основе изменения количества тепла ЬQ (не являющегося полным дифференциалом) определить изменение количества информации с18 - функции, изменение которой является полным дифференциалом  [c.17]

Нап1ядное представление о технологачности изделия дают схемы сборки, предусматривающие вьщеление ступеней технологического процесса. Может также быть использована форма схемы сборки, показывающая расположение собираемых элементов с указанием технологической последовательности сборки (рис. 5.9). За исходную принимается базовая деталь 1—1, к которой присоединяются по две детали 1—2 и 1—3. В результате этого образуется сборочная единица  [c.225]

Графическая модель в деятельности проектирования и изготовления изделия все больше вытесняется математической моделью. ЕСКД различает понятия Изделие и Геометрический образ изделия , относя к последнему только пространственно-метрические свойства реальной конструкции. Понятие Геометрический образ изделия используется в проектировании, определяя ту часть деятельности, которая может быть названа формообразованием. Этот процесс включает параметры потребительско-эксплуатационного и технологического плана, но только в виде условий, определяющих форму. Сам же геометрический образ изделия является структурно-пространственным. Его математическое описание в ЭВМ представляет математическую модель, являющуюся основной структурной единицей процесса создания технического изделия. При добавлении к ней необходимой технологической информации эта модель служит для управления процессом изготовления деталей на станках с ЧПУ. С помощью стандартных программ математическая модель геометрического  [c.15]

Первая цель. может быть достигнута посредством вы-гслкгния приблизительного наброска объемно-пространственной структуры модели в свободном углу листа (рис. 3.2.1). В результате предварительной (поисковой) стадии анализа пространственной структуры объекта должен определиться конструктивный характер изображаемой формы, основные геометрические особенности образующих ее элементов. Студент должен представить характер базового объема, размерные соотношения его по трем осям координат. Если потребуется, то принимается решение о наиболее рациональном виде аксонометрического проецирования. Так как в конкретных условиях учебного процесса (первый семестр) студенты еще не знакомы с основ ными понятиями начертательной геометрии, то в большинстве работ можно рекомендовать использовать прямоугольную изометрическую проекцию  [c.105]

Для фокусирования электронного луча в электронгюй пушке обычно используется система диафрагм и магнитных линз. Магнитная линза 4 представляет собой соленоид с магнитопроводом, создающий специальной формы магнитное поле, которое при взаимодействии с электроном изменяет его траекторию и искривляет ее в направлении к оси системы. При этом можно добиться сходимости электронов на достаточно малой площади поверхности и в фокусе электронный луч может обладать весьма высокой плотностью энергии, достигающей 5-10 Bт/мм . Такая плотность энергии достаточна для осуществления целого ряда технологических процессов, причем в результате измене ния фокусировки она может быть плавно изменена до минимальных значений.  [c.108]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]

Что касается анализа необратимых процессов, то необходимо иметь в виду следующее. Изменение любой функции состояния в результате необратимого процесса может быть найдено из рассмотрения воображаемого обратимого перехода из начального или исходного состояния в конечное состояние, достигаемое в данном необратимом процессе. Если воображаемый обратимый переход выбран так, что во всех точках его сохраняется основное условие, характеризующее рассматриваемый необратимый процесс, то для анализа могут использоваться те из дифференциальных уравнений термодинамики в частных производных, которые отвечают указанному основному условию. Напсмним, что указанное условие записывается в форме X — = onst, где X может представлять собой один из термических параметров,  [c.158]


В САЭИ различного назначения и уровня могут быть использованы и используются ЭВМ разных типов и классов — от простейших микропроцессорных устройств, непосредственно встроенных в измерительную аппаратуру, до крупных вычислительных машин и комплексов. Общая же структура большинства ЭВМ остается сходной. В общем случае ЭВМ состоит из процессора, включающего в себя арифметическое устройство и устройство управления, оперативного запоминающего устройства (ОЗУ) периферийного оборудования, содержащего внешнее запоминающее устройство (ВЗУ), устройства ввода и вывода (рис. 17.3). Арифметическое устройство (АУ) выполняет арифметические и логические операции, предусмотренные программой. Устройство управления (УУ) согласует работу всех составных частей ЭВМ и управляет ходом вычислительного процесса. АУ и УУ в совокупности образуют процессор. Оперативное запоминающее устройство (ОЗУ) служит для хранения всей информации и программ, необходимых для организации вычислений. Внешнее запоминающее устройство служит для хранения больших объемов информации, которая не может быть размещена в ОЗУ. Устройства ввода обеспечивают передачу программ и числовой информации в ОЗУ. Устройства вывода, которые представляют полученную в результате расчетов информацию в форме, доступной для непосредственного восприятия исследователем, называют терминалами. К важнейшим характеристикам ЭВМ относятся среднее быстродействие, характеризуемое средним числом операций в 1 с, выполняемых процессором объем ОЗУ, характеризуемый числом машинных слов (обычно килослов), единиц К, где /С=1024 слов, или байт (килобайт) информации, которая может быть размещена в ОЗУ длиной слова (числом двоичных разрядов или бит в одном слове)  [c.339]

Вывод о существовании энтропии и абсолютной температуры как термодинамических функций состояния любых тел составляет основное содержание второго начала термодинамики (по терминологии проф. Н. И. Белоконя — второго начала термостатики). Математическое выражение в форме равенства 5Q = 5Q + 50 = Тс18 распространяется на любые процессы — обратимые и необратимые. В качестве постулата для вывода этого закона может быть использовано утверждение, что температура есть единственная функция состояния, определяющая направление самопроизвольного теплообмена между телами .  [c.48]

Теория р-распада отдельного нуклона строится на основе математического аппарата квантовой теории поля, поскольку с помощью этого аппарата можно описывать процессы рождения и поглощения частиц. В квантовой теории поля, как и в нерелятивистской квантовой теории, конкретный вид взаимодействия полностью определяется заданием оператора Гамильтона. Этот оператор Гамильтона действует на векторы состояния, которые имеют довольно сложную математическую природу (являются функционалами). Соответствующий математический аппарат очень сложен. Поэтому мы ограничимся описанием результатов. Из условий релятивистской инвариантности для полного, определяющего Р-рас-падные явления оператора Гамильтона получается выражение, состоящее из довольно большого, но конечного числа слагаемых определенного вида с неизвестным численным коэффициентом при каждом слагаемом. Эти численные коэффициенты могут быть определены только из сравнения предсказаний теории с экспериментальными данными. Для этого следует использовать разрешенные переходы, в которых слабо сказывается влияние структуры ядра. Так, если требовать, чтобы разрешенные Р-спектры имели форму (6.62) с не зависящим от энергии коэффициентом В, то в р-распадном гамильтониане отбрасываются все слагаемые сравнительно сложного вида и остаются только восемь относительно простых слагаемых (их осталось бы всего четыре, если бы в слабых взаимодействиях сохранялась четность). Нахождение коэффициентов при этих восьми слагаемых оказалось громоздкой задачей, решенной лишь к концу пятидесятых годов на основе большого числа различных экспериментов. Укажем, какого рода эксперименты нужны для решений этой задачи. Отличия, как их называют, различных вариантов Р-распада проявляются прежде всего в том, что каждый вариант характеризуется своим отношением числа электронно-антинейтринных (или позитронно-нейтрин-ных) пар, вылетающих с параллельными и антипараллельными спинами. Поэтому существенную информацию о вариантах Р-распада дает изучение относительной роли фермиевских и гамов-теллеровских переходов. Информация о вариантах распада может быть получена также из исследования угловой корреляции между вылетом электрона и нейтрино, т. е. углового распределения нейтрино относительно импульса вылетающего электрона. За счет релятивистских поправок это угловое распределение оказывается неизотропным, причем коэффициент анизотропии мал, но различен для разных вариантов распада. Измерения корреляций очень трудны, так как приходится регистрировать по схеме совпадений (см. гл. IX, 6, п. 3) импульс электрона и очень малый импульс ядра отдачи. Наконец, для однозначного установления варианта Р-распада нужны эксперименты типа опыта By. После длительных исследований было установлено, что в реальном гамильтониане Р-распада остаются только два из всех теоретически возможных слагаемых (эти оставшиеся варианты называются векторным и аксиальным). Тем самым вся теория Р-распада определяется всего лишь двумя опытными константами — коэффициентами при этих двух слагаемых. При этом существенно, что эти две константы определяют не только Р-распадные процессы, но и все другие процессы слабых взаимодействий (см. гл. VH, 8). Сейчас построение теории р-распада нуклонов можно считать в основном завершенным. В гл. Vn, 8 мы увидим, что эта теория является частным случаем общей теории  [c.252]

Стали для измерительных инструментов. Измерительные инструменты (плитки, калибры, шаблоны) должны сохранять свою форму и размеры в течение продолжительного времени. В них не должны совершаться самопроизвольные структурные превращения, вызывающие изменение размеров инструмента в процессе эксплуатации Коэффициент. тнейного расширения должен быть минимальным. Этими свойствами обладают стали с мартенситной структурой. Для изготовления измерительных инструментов используют стали марок X, Х9, ХГ, Х12Ф1. Закалка проводится при температурах 850.. 870 °С в масле. Для устранения остаточного аустенита после закалки проводится обработка холодом при минус 70 °С, а затем низкий отпуск при 120 140 с. Твердость после термообработки составляет 63.. 64 ИКС,  [c.107]

Будем считать физические свойства среды р, Ср и X постоянными параметрами, определяемыми видом вещества среды. В действительности они зависят от температуры и давления, а поскольку здесь идет речь о полях температуры t x, у, г, т) и давления р[х, у, г, т), то физические параметры в общем случае являются функциями координат и времени. Зависимостью от давления можно пренебречь по двум причинам во-первых, физические параметры слабо зависят от давления (за исключением плотности газовой среды) и, во-вторых, исходные допущения, при которых получены уравнение (12.4) и являющееся его следствием уравнение (12.7), в совокупности своей эквивалентны предположению об изобарности процесса теплообмена. Учет переменности плотности газовой среды зависит от изменения давления при движении газа с большой скоростью градиент давления в потоке может быть весьма значительным и в этом случае используется уравнение энергии в форме (12.6) с учетом переменности плотности. Таким образом, физические параметры среды зависят в основном от температуры, которую приходится учитывать.  [c.269]

М. Л. Козловым [285] сделана интересная попытка построения механико-математической модели определения остаточных напряжений непосредственно в процессе нанесения покрытий. Преимуществом такого подхода по сравнению с механическими методами, основанными на послойном удалении, является возможность проведения неразрушающих испытаний. Остаточные напряжения в этом случае могут быть определены с привлечением математического аппарата механики деформируемого твердого тела. Разработан общий принцип неразрушающих методов исследования остаточного напряженного состояния покрытий, заключающийся в том, что вместо данных о деформации основного металла с покрытием предлагается использовать сведения о величине внешних силовых факторов, непрерывно удерживающих композицию основной металл — покрытие в исходном состоянии либо возращающих ее в это состояние. Применение общего принципа неразрушающих методов дает возможность вычислять остаточные напряжения без привлечения классической расчетной схемы, для которой необходимо построение различных моделей нанесения покрытия -в зависимости от вида стеснения и формы покрываемого образца [285].  [c.188]

В ранних попытках определения усадочных напряжений вокруг стеклянных дискообразных включений заливалась полиэфирная смола Paraplex Р-43 и анализировались йолученные картины изохром [18]. Одной из простейших решенных задач является задача об усадочных напряжениях вокруг двух включений (рис. 3). При анализе таких интерференционных картин важно убедиться, что используется правильное значение цены полосы. Цена полосы может быть найдена испытанием тариро-вочного образца из прошедшего отверждение материала матрицы, однако неясно, позволяет ли эта величина правильно нн-терпрепировать картины полос, сформировавшиеся в процессе отверждения, когда свойства материала меняются. Эту проблему можно обойти, выразив все результаты в безразмерной форме, где номинальное напряжение равно сжимающему напряжению вокруг изолированного включения.  [c.501]


Смотреть страницы где упоминается термин 367 — Суть процесса, используемые формы : [c.541]    [c.66]    [c.72]    [c.174]    [c.187]    [c.18]   
Специальные способы литья (1991) -- [ c.0 ]



ПОИСК



Дом быта



© 2025 Mash-xxl.info Реклама на сайте