Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

120— Применения 318—319 —Уравнения течения 176 — Основные

Учебник содержит систематическое изложение теоретических основ механики жидкости и газа в объеме курса, читаемого для соответствующей специальности. Он знакомит с методами расчета до-, около- и сверхзвуковых потоков, с расчетом двухфазных потоков, теорией пограничного слоя, расчетом течений при подводе теплоты, массы и т. п. Автор стремился обратить внимание на физическую сущность задач и расчетную сторону проблем, что важно для инженеров. Основные уравнения записаны в интегральной и дифференциальной формах с применением индексной записи. Это позволило сделать все преобразования компактными и наглядными особенно при рассмотрении общих случаев. Применение уравнений сохранения в интегральной форме дает возможность просто решать ряд инженерных задач.  [c.3]


Рассматриваемая монография имеет следующие наименования отдельных глав ч. 1—общие свойства газовых течений введение закон обращения воздействий, изолированные воздействия общие соотношения ч. 2 — течение идеального газа основные уравнения и характеристики качественные соотношения примеры расчета для отдельных воздействий (геометрическое и идеальное расходное сопло, механическое сопло, тепловое сопло, движение с трением в цилиндрической трубе, расходное воздействие, сравнение некоторых результатов расчета) примеры расчета для сложных воздействий ч. 3 — тепловые и адиабатические скачки адиабатический скачок уплотнения тепловые скачки в газовых течениях количественные соотношения применение уравнения количества движения к газовым течениям.  [c.330]

Применение термодиффузии для расчета равновесных термодинамических свойств — новое направление, возникшее в течение последних лет в результате развития неравновесной термодинамики. Ранее термодиффузию использовали в основном как метод разделения жидкостей и газов. О величине эффекта разделения можно получить представление, решив уравнение (8.231) для стационарного состояния, когда У]=0.  [c.235]

Как уже указывалось выше, основной областью применения деформационных уравнений повреждений является малоцикловая усталость [18, 39], причем расчет ширины петель пластического гистерезиса должен проводиться в этих условиях с учетом деформационной анизотропии. Кроме того, должна приниматься во внимание возможная циклическая нестабильность и ползучесть материала. Соответствующие расчеты не могут производиться на основе соотношения (3.31) теории течения, которая не учитывает  [c.91]

Если при турбулентном течении скорость потока с,- принимать за среднюю, на которую накладывается колебание скорости с., то мы должны знать о колебаниях с, и д и об их зависимости от условий в иоле потока, чтобы действительно иметь возможность образовать статически средние значения скоростей в такой форме, в какой они встречаются в формуле (307). Эти сведения дает теория турбулентности, применение которой в теории и тепловых расчетах турбин в настоящее время назрело. Не касаясь пока положений указанной теории, все же можно из написанных выше основных уравнений потока сделать существенные выводы, о чем будет сказано далее.  [c.171]

В случае потенциального потока вопрос интегрирования основных уравнений процесса течения в настоящее время решается путем интегрирования системы дифференциальных уравнений (294)—(298) с применением аппарата теории функции комплексного переменного. Однако такие методы громоздки и в процессе расчетов менее удобны для программирования на электронных вычислительных машинах.  [c.180]

Основные уравнения одномерного течения — уравнения неразрывности, импульса и энтальпии торможения двухфазной среды в канале переменного сечения — могут быть получены непосредственно из общих уравнений, выведенных ранее, путем применения их к некоторому участку канала.  [c.108]

В качестве простого примера применения этих соотношений покажем, как можно вывести закон Стокса (2.6.3), хотя, разумеется, реальное значение этих соотношений более важно в сложных случаях, когда получение решений в замкнутой форме невозможно. Рассмотрим сферу с центром в начале координат, обтекаемую жидкостью с постоянной скоростью и вдоль оси X, Чтобы сфера находилась в покое, в направлении —х должна действовать некоторая сила. В результате возмущение, обусловленное удерживанием сферы в покое, будет влиять на основное течение. Бюргере предположил, что вид этого течения не будет сильно отличаться от вида течения, генерируемого точечной силой, приложенной в начале координат. Тогда компонента которая в данном случае отрицательна, создает поле скоростей, описываемое уравнениями (3.4.31) — (3.4.33). Если рассматривать сферу произвольного радиуса а, наличие которой вызывает силу, то можно потребовать, чтобы средняя величина скорости U и, v,w) исчезала на поверхности. Вследствие симметрии средние величины v и IV будут автоматически удовлетворять этому условию. Что касается U, запишем  [c.104]


Следует отметить, что при моделировании процессов пластического течения необходимость решения больших систем с применением ЭВМ требует применения матричной формы записи основных уравнений мех аники сплошных сред.  [c.13]

С целью возможного применения методов теории возмущений (асимптотических методов) важно выделить малые или большие параметры, входящие в систему урав нений и характеризующие основные особенности изучаемых физических процессов. Знание таких параметров может позволить упростить исходную систему уравнений в некоторых областях определения решения и тем самым применить более экономичные численные подходы. Так обстоит дело, например, в задачах стационарного обтекания тел вязким газом на основе уравнений Навье-Стокса, когда вязкость зачастую можно учитывать лишь в области пограничного слоя вблизи тела, а в основной области течения можно пользоваться более простыми уравнениями Эйлера.  [c.22]

Основное содержание работы связано с изложением иной концепции построения сеток, развиваемой, главным образом, в работах российских ученых в течение 30 лет [1]. Главная особенность подхода связана со специальным способом формализации критерия (Р), приводящему к нелинейному вариационному функционалу, в который входят как первые, так и вторые частные производные функций, реализующих отображение. Этот непрерывный функционал появляется естественным образом после рассмотрения дискретного функционала, минимизирующего меру относительной погрешности неравномерной сетки по сравнению с равномерной. Такая формализация приводит к системе уравнений Э-0 четвертого порядка, гиперболической в широком смысле. Это позволило рассмотреть новые более широкие типы краевых условий, а также разработать эффективные алгоритмы и программы построения сеток для весьма сложных областей. Экономичные и эффективные процедуры расчета сеток связаны с применением итерационных процессов, использующих как специальную нестационарную модификацию уравнений Э 0, так и прямые геометрические способы минимизации дискретных функционалов, формализующих все три критерия оптимальности.  [c.513]

Изучение проблемных вопросов сверхзвуковой аэродинамики шло параллельно с разработкой методов, пригодных для практического расчета различных случаев сверхзвуковых течений. Одним из основных рабочих методов был классический метод характеристик. С созданием электронно-вычислительных машин главный его недостаток — трудоемкость вычислений — был снят, что значительно расширило область применения метода. Однако и раньше пытались упростить метод характеристик достаточно простой метод интегрирования уравнения характеристик (характеристики одного из семейств заменялись параболами) разработал А. А. Дородницын (1949), линеаризованный метод характеристик (обобщение метода расчета двумерных течений) предложил А. Ферри (1946). Оба метода использовались в случаях осесимметричного обтекания тел вращения.  [c.328]

Второй областью применения метода ГИУ является определение движения свободной поверхности непосредственно из основной системы уравнений, в особенности, если на свободной поверхности задаются нелинейные граничные условия. Здесь может также применяться метод ГИУ, поскольку основное уравнение по-прежнему является линейным до тех пор, пока жидкость можно считать невязкой и несжимаемой, а течение безвихревым, нелинейные эффекты будут проявляться только в граничных условиях на свободной поверхности. (Учет сжимаемости приводит к задаче, изучаемой в гидроакустике, которая является областью весьма интенсивного применения метода ГИУ, но обычно рассматривается отдельно от теории поверхностных волн на воде ввиду значительного различия скоростей волн в этих Двух задачах.)  [c.21]

Ограничения математического анализа. Идеальная научная теория состоит из минимального количества аксиом (основных принципов и понятий), из которых решение любой задачи может быть получено формальной логикой, т. е. математически. Сейчас такая всеобъемлющая теория движения жидкости воплощена в уравнении неразрывности и общих уравнениях движения. К сожалению, сложность большинства явлений течения и пределы аналитических способностей человека ограничивают строгое применение этой теории только несколькими простыми случаями. Например, можно найти распределение давления в жидком теле, которое целиком вращается или испытывает ускорение иным способом пределом в этом случае будет гидростатическое распределение. Могут быть точно рассчитаны сопротивление ламинарного потока в однородной трубе или установившаяся скорость падения малого шара. Точно выражается и частота волн малой амплитуды под действием силы тяжести, капиллярности или упругости. Более сложные состояния потока могут быть подвергнуты теоретическому анализу лишь при игнорировании некоторыми не поддающимися описанию сторонами движения. В ряде случаев результаты имеют достаточную для инженерной практики точность. Однако часто, особенно для случая турбулентного движения, математические трудности становятся настолько значительными, что решение может быть получено только после чрезвычайного упрощения.  [c.6]

Вариационные уравнения принципов возможных изменений деформированного состояния, напряженного состояния и одновременного возможного изменения напряженно-деформированного состояния сами по себе не уменьшают сложности решения конкретных задач. Действительно, вариационное уравнение (3.31) или (3.39) эквивалентно полной системе дифференциальных уравнений теории пластического течения (3.36) или (3.40). Вариационное уравнение принципа возможных изменений деформированного состояния и возможных изменений напряженного состояния эквивалентны соответственно решению дифференциальных уравнений равновесия в скоростях и решению уравнений неразрывности деформации, записанных в напряжениях. Вариационные уравнения удобны для построения приближенных решений задач. С помощью прямых методов вариационного исчисления [10, 67, 109] сводят вариационные уравнения к системам алгебраических (во всяком случае конечных) или обыкновенных дифференциальных уравнений. Рассмотрим прямые методы, нашедшие применение для решения технологических задач с помощью указанных выше трех принципов. Начнем с принципа возможных изменений деформированного состояния. Основной отличительной чертой почти всех имеющихся в теории обработки металлов давлением решений [163, 164 и др.] является приближенное представление функционала, которое основано на допущении  [c.96]


Учитывая вышесказанное, мы рассмотрим сначала (гл. И—XI) применение дифференциальных уравнений Эйлера к струйным течениям и к течениям жидкости, ограниченным поверхностью раздела жидкости и газа. Основная часть книги посвящена этим вопросам не потому, что они имеют наибольшее практическое значение, а только потому, что они лучше всего поддаются теоретическому анализу.  [c.14]

Метод характеристик имеет ряд преимуществ по сравнению с другими численными методами основные уравнения значительно упрощаются на характеристических поверхностях, метод отличается математической строгостью (доказана сходимость метода и единственность решения). Эти обстоятельства обусловили широкое использование численного метода характеристик при решении двумерных задач для уравнений гиперболического типа. Применение метода к трехмерным задачам сильно затруднено сложным поведением характеристических поверхностей, что обусловливает трудности построения характеристической сетки, громоздким алгоритмом вычислений и сложностью программирования. В связи с этим метод характеристик в его чистом виде до настоящего времени применялся для расчетов трехмерных течений лишь в очень небольшом числе случаев. Для решения трехмерных задач сверхзвукового обтекания тел представляются более перспективными методы конечных разностей-и смешанные методы (комбинации двумерного метода характеристик и метода конечных разностей по третьей переменной).  [c.169]

Поскольку уравнения Фридмана — Келлера оказываются всегда незамкнутыми, естественно возникает проблема замыкания уравнений для моментов. Этой проблеме посвящалась и посвящается значительная часть теоретических работ по динамике турбулентных течений, и хотя полностью преодолеть встречающиеся здесь трудности пока так и не удалось, некоторые из предложенных приближенных методов замыкания все же оказались весьма полезными (см., в частности, 3, посвященный теории изотропной турбулентности). Однако наиболее важные, и практически ценные результаты в теории турбулентности были получены на двух обходных направлениях, одно из которых связано с описанием крупномасштабных компонент турбулентности (масштабы которых сравнимы с характерным масштабом течения в целом) при помощи так называемых полуэмпирических методов, а второе — с описанием мелкомасштабных компонент (с масштабами, много меньшими масштаба течения в целом) на основе применения некоторых естественных гипотез подобия. Основное различие в поведении этих двух типов компонент турбулентности состоит в том, что крупномасштабные возмущения существенно зависят от геометрии потока и характера внешних воздействий, в то время как режим мелкомасштабных возмущений оказывается в значительной степени имеющим универсальный характер. Подробному разбору развития двух указанных направлений в теории турбулентности будут посвящены 2 и 4 настоящего обзора.  [c.466]

Итак, в лекциях 4-6 мы рассмотрели три конкретных примера применения общего подхода к построению моделей сжимаемой сплошной среды. Эти модели наиболее употребительны в приложениях газовой динамики в различных областях науки и техники. Кроме того, в общетеоретических исследованиях свойств течений сжимаемого газа часто употребляется так называемая двупараметрическая модель, обладающая основными чертами модели совершенного газа с постоянными теплоемкостями, однако не ограниченная конкретным видом уравнения состояния в основных переменных s, е, р. Иначе говоря, вместо уравнения состояния (4.16) рассматривается более общая функция двух переменных s = s(e, р), на которую, тем не менее, накладываются некоторые ограничения. Такой подход широко используется, например, в одном из недавно вышедших учебников по газовой динамике [26]. В наших лекциях двупараметрическая модель также будет использована в ряде разделов (теория звука, теория ударных волн, гиперзвуковые течения и т. п.). Однако автор считает, что ограничение только двупараметрической моделью оставляет вне поля зрения исследователей огромное множество реальных газодинамических явлений.  [c.47]

На основании изложенной выше полной постановки задачи сверхзвукового обтекания затупленных тел легко понять, что здесь исследователи имеют дело с одной из самых сложных задач математической физики. Это краевая задача для нелинейных уравнений в частных производных. Дополнительная трудность состоит в том, что часть границы, а именно головная часть ударной волны заранее не известна и должна быть определена в процессе решения. Кроме того, задача по существу является трансзвуковой, т.е. область течения содержит как дозвуковое течение, так и сверхзвуковой поток, в которых закономерности распространения возмущений, формирующих течение, существенно различны. В современной математике не существует точных аналитических методов решения таких задач. Действительно, основной прогресс в решении этой задачи был достигнут с использованием численных методов. Бурное развитие этого научного направления с применением быстро прогрессирующей вычислительной техники относится ко второй половине XX века.  [c.173]

Влияние распределения частиц по размерам. В применении к течению в несжимаемом (газовом) ламинарном пограничном слое незаряженных сферических твердых частиц различных размеров основные уравнения стационарного движения около плоской пластины упрощаются, если концентрация частиц мала, когда = о, Кт = о, 7 = onst, и = Up = onst и рро = onst  [c.354]

Для исследования краевой задачи (3.48)-(3.53) применяем подход, основанный на методе Бубнова-Галеркина и связанный с приближенным описанием течения с помоп1ЬЮ конечномерных динамических систем. При построении галеркинской аппроксимации уравнений гидродинамики основным является вопрос о том, сколько базисных функций учитывать в разложении. Единственным критерием правильности конечномерного описания является сравнение его с точным решением (если оно известно), либо с экспериментом. Имеющийся опыт применения разложений Галеркина низшего порядка (см. п. 3.1.2) показал их эффективность при качественном исследовании весьма сложных неоднородных нелинейных термохимических и гидродинамических систем для тех ситуаций, когда ясно, какую картину течения мы хотим описать.  [c.108]

При Мо 0.1 мы имеем а 10 м , и по условию (5.183) At ограничено в основном скоростью звука, что уменьшает максимально допустимые значения А/ в десять раз по сравнению со случаем применения уравнений для несжимаемой жидкости. Более того, паразитные звуковые волны на сетке приведут к возрастанию ошибки, связанной с неразличимостью, и (что, быть может, наиболее важно) ухудшат итерационную сходимость. Черни с соавторами [1950] указал на желательность эффективного отфильтровывания этих паразитных волн и применения поэтому уравнений течения несжимаемой жидкости.  [c.422]

Основная идея метода характеристик состоит в уменьшении числа независимых переменных в результате введения характеристических поверхностей (характеристических направлений). Как было показано в 2.2, определяя характеристики как линии, на которых решение задачи Kouin либо не существует, либо неединственно, удается систему двумерных уравнений газовой динамики в частных производных свести к системе обыкновенных дифференциальных уравнений направления и совместности, выполняющихся вдоль характеристик. Так, система уравнений в частных производных, описывающих одномерное нестационарное течение совершенного газа, сводится в результате применения метода характеристик к системе обыкновенных дифференциальных уравнений вдоль характеристик (2.53). Система уравнений, описывающая стационарное неравновесное течение газа, сводится к системе обыкновенных дифференциальных уравнений  [c.112]


Однако в пучках витых труб эта связь практически не реализуется [39] Это можно объяснить как влиянием конечности размеров источника и неравномерности поля скорости в ядре потока, так и загромождением исследуемого потока витыми трубами. Это приводит к тому, что нагретые частицы вблизи устья струи успевают пройти большое число не коррелированных между собой различных путей от источника до рассматриваемой точки, хотя распределения пульсационных скоростей при числах Ее > Ю" в ядре потока и приближаются к нормальному закону распределения. При числах Ее < Ю наблюдается отклонение пульсаций скорости от закона Гаусса в пучке витых труб, что свидетельствует об анизотропности турбулентности в таких пучках в этом диапазоне чисел Ее. Поэтому в закрученном пучке витых труб метод диффузии тепла от источника использовался только для определения коэффициента а. его применение оправдьшалось совпадением экспериментальных распределений температур с гауссовским распределением, хотя основные допущения теории Тэйлора в данном случае не выполняются строго. В экспериментах источник диффузии имел радиус, примерно в три раза превышающий радиус витой трубы. В этом случае свойства потока индикаторного газа (нагретого воздуха) и основного потока одинаковы, Это позволяет получить достаточно надежные опытные данные по коэффициенту В то же время если в работе [39] для прямого пучка витых труб, где радиус источника, бьш равен радиусу витой трубы, удалось оценить значение интенсивности турбулентности по уравнению (2.9), то в данном случае это исключается из-за больших размеров источника. Для увеличения точности определения коэффициента опыты по перемешиванию теплоносителя в закрученном пучке проводились при неподвижном источнике диффузии, а для определения полей температуры на различном расстояниии от него в витых трубах были установлены термопары. При этом измерялась температура стенок труб (т.е. температура твердой фазы в терминах гомогенизированной модели течения). Эта методика измерений могла приводить к погрешностям в определении коэффициента ) г, поскольку распределения температур в ядре потока теплоносителя и стенки труб различны, а следователь-различны и среднестатистические квадраты перемещений, а также и причем это различие, видимо, носит систематический характер. Подход к учету поправки в определяемый коэффициент Df при измерении температуры стенки изложен в разд. 4.2.  [c.55]

Одной из важнейших областей применения полученных зависимостей является тепловой расчет сверхзвуковых сопл. При этом уравнение (11-37) следует видои менить в соответствии с результатами гл. 13. Однако основной фактор, оказывающий влияние на теплоотдачу в потоке сжимаемого газа, — изменение плотности внешнего течения вдоль обтекаемой поверхности — уже принят во внимание посредством использования в интегральном уравнении энергии массовой скорости G = u p. Поскольку G представляет собой массовый расход, отнесенный к площади поперечного сечения потока, этот параметр очень удобен при расчете сопл. Так как G имеет максимальное значение в горловине сопла, а St = = alG ), или a=G St, очевидно, и теплоотдача в области горловины максимальна. С ростом числа Рейнольдса вдоль сопла число Стантона согласно уравнению (11-37) падает. Поэтому максимальное значение коэффициента теплоотдачи обычно наблюдается непосредственно перед горловиной сопла.  [c.301]

Выполненные теоретические исследования позволяют проанализировать влияние основных факторов на расход реальных жидкостей при течении их через микронеплотности и наметить наиболее рациональный путь экспериментальных исследований, а применение методов теории подобия для обработки опытных данных позволит получить расчетные уравнения, пригодные для инженерной практики.  [c.164]

Применение основных представлений учения о фазовых превращениях для описания процессов конденсации в паровых турбинах [1—3 ] имеет большое значение в развитии теории турбин. В настоящее время развиваются и усовершенствуются инженерные методы расчета различных процессов во влажно-паровых турбинах [4—6]. Ниже излагаются основные положения разработанной в ЦКТИ методики расчета влажно-паровых турбин с учетом неравновесной конденсации. Используется система уравнений одномерного стационарного течения влажно-парового потока при наличии неравновесных фазовых переходов [2, 6]. Система включает уравнения сохранения массы, количества движения и энергии, уравнения состояния и кинетические уравнения, описывающие процессы влаговыделения.  [c.102]

Как мы скоро увидим, только простые полностью развитые течения описываются уравнениями типа уравнений теплопроводности, поэтому попадают в область применения ONDU T. Для сложных полностью развитых течений также можно упростить вычисления за счет уменьшения размерности, но из-за наличия поперечных скоростей требуется включение в основные дифференциальные уравнения конвективных членов. Для определения этих скоростей необходимо решение взаимосвязанных уравнений движения и неразрывности в поперечном сечении, что представляет собой задачу слишком сложную, чтобы ее включать в данную книгу.  [c.176]

Такие течения для несжимаемой жидкости изучены в [7] применительно к задаче о движении жидкого эллипсоида. Для уравнений газовой динамики течения такого типа рассматривались впервые Л. В. Овсянниковым в [6]. Эти течения нашли применение при решении задачи о динамике гравитируюпдего газового эллипсоида [11.В[3,5,11] изучены некоторые пространственные стационарные решения уравнений Навье-Стокса, в которых компоненты вектора скорости линейно зависят от двух координат. В классе таких течений решается, в частности, задача о равномерном вращении в вязкой жидкости бесконечного диска [3]. Цель предлагаемой статьи — описание основных типов гидродинамических  [c.176]

Работа профессора Ж.-П. Пуарье издана в кембриджской серии книг по наукам о Земле. В настоящее время проблемы физического материаловедения в применении к минералам и горным породам находятся в центре внимания специалистов по физике Земли, планет и спутников. Это и понятно. Чтобы построить эволюционную модель планетного тела, необходимо знать законы, управляющие течением минералов, льдов и горных пород —основных материалов, из которых построены недра Земли, планет и их спутников. При этом важно выяснить именно физический механизм, который приводит к искомому феноменологическому уравнению, так как требуется вскрыть зависимость эффективной вязкости от давления, температуры и касательных напряжений. Это позволяет экстраполировать лабораторные данные к условиям, господствующим в недрах планетных тел. Именно физическим механизмам высокотемпературной ползучести и посвящена монография Ж.-П. Пуарье.  [c.5]

Метод Галеркина. Широкое распространение в задачах устойчивости конвектиовных течений пол)Д1ил метод Галеркина ввиду его простоты и универсальности. Основная идея этого метода (см. [18]) состоит в том, что приближенное решение амплитудной задачи ищется в виде линейной суперпозиции конечного числа некоторых базисных функций, удовлетворяющих граничным условиям. Коэффициенты разложения определяются из интегральных условий, выражающих ортогональность невязки к каждой базисной функции. Задача сводится, таким образом, к решению системы алгебраических уравнений для коэффициентов разложения. В качестве базиса обычно выбираются первые функции какой-либо полной системы. Успех в применении метода определяется выбором базисных функций и их числом.  [c.20]

Мы уже указывали в п. 6.1, что в случае турбулентных течений законы механики описываются системой уравнений Рейнольдса, число неизвестных в которой превосходит число уравнений. Поэтому уравнения Рейнольдса не могут быть решены в обычном смысле этого слова при выборе пх решений, имеющих физический смысл, какие-то функции, описывающие турбулентность, должны быть заданы независимо от этих уравнений. В некоторых случаях вид таких функций можно найти (с точностью до небольшого числа эмпирически определяемых констант) исходя из соображений размерности. Чаще, однако, это все равно приводит к соотношениям, содержащим неизвестные функции. Общее число таких неизвестных функций, необходимых для описания различных турбулентных течений в природе или в технических устройствах, весьма велико. Поэтому естественно, что многие исследователи стремились свести их определение к нахождению небольшого числа связей между характеристиками турбулентности, применимых сразу ко многим течениям. Теории турбулентности, использующие наряду со строгими уравнениями гидромеханики также некоторые дополнительные связи, найденные эмпирически по данным экспериментов или же выведенные с помощью качественных физических рассуждений, называются полуэмпирическими теориями. С точки зрения чистой теоретической физики все эти теории должны рассматриваться как нестрогие, но в развитии наших представлений о турбулентных течениях они сыграли очень большую роль, и многие из них до сих пор продолжают широко использоваться в технике. Поэтому представляется целесообразным дать здесь хотя бы краткое -Представление об основных идеях важнейших полуэмпирических теорий, предложенных Буссинеском (1897), Прандтлем (1925), Тэйлором (1915, 1932) и Карманом (1930). Этому и будет посвящен настоящий параграф дальнейшее развитие такого подхода к теории турбулентности и некоторые конкретные примеры применения полуэмпирических теорий будут рассмотрены в следующей главе.  [c.319]


Теорию крыла конечного размаха позволило создать использование основополагающей теоремы Н. Е. Жуковского о связи подъемной силы с циркуляцией и модели течения с присоединенным вихрем, так что эта теория является логическим продолжением и развитием идей, составляющих фундамент теории крыла бесконечного размаха, В 1910 г. С. А. Чаплыгин в докладе на тему Результаты теоретических исследований о, движении аэропланов сформулировал общие представления о вихревой системе крыла конечного размаха. В 1913 и 1914 гг. им были получены первые формулы для подъемной силы и индуктивного сопротивления. Они были доложены на третьем воздухоплавательном съезде в Петербурге. В дальнейшем основное распространение получила теория несущей линии, предложенная в Германии Л. Прандтлем для крыльев большого относительного удлинения. В рамках этой схемь было получено интегро-дифференциальное уравнение, связывающее изменение циркуляции и индуктивный скос потока. Задача свелась к отысканию различных приближенных методов его решения. В работе Б. Н. Юрьева (1926) был применен геометрический прием, в котором использовалось предположение о том, что распределение циркуляции близко к эллиптическому и что отклонения от этого распределения повторяют форму крыла в плане. Аналитические методы, применявшиеся на начальном этапе развития теории для получения приближенных решений, состояли в требовании удовлетворения основному уравнению в ограниченном числе точек по размаху. Так, в методе тригонометрических разложений В. В. Голубев (1931) заменил бесконечный тригонометрический ряд тригонометрическим многочленом, сведя бесконечную систему уравнений к конечной системе, в которой число неизвестных соответствует числу членов разложения циркуляции и числу точек на крыле. С целью более точного учета формы крыла в плане при ограниченном числе решаемых алгебраических уравнений Я. М. Серебрийский (1937) предложил для решения интегро-дифференциального уравнения использовать способ наименьших квадратов.  [c.92]

Книга разделена на четыре части. В первой части в двух вводных главах излагаются без применения какого бы то ни было математического аппарата первоначальные сведения из теории пограничного слоя остальные главы этой части посвящены математической и физической разработке теории пограничного слоя на основе уравнений Навье — Стокса. Во второй части излагается теория ламинарного пограничного слоя, в том числе и температурного пограничного слоя. В третьей части рассматривается переход течения из ламинарной формы в турбулентную, т. е. возникновение турбулентности. Наконец, четвертая часть посвящена турбулентным пограничным слоям. Теорию ламинарного пограничного слоя в настоящее время можно считать в основном ее содержании законченной ее физические особенности полностью разъяснены, а расчетные методы разработаны до большого совершенства и во многих случаях доведены до столь простой формы, что полностью доступны инженеру. Оставшиеся неразрешенными специальные проблемы (например, пограничный слой при течении сжимаемой жидкости и пограничный слой при наличии отсасывания) носят в основном математический характер. Вопрос о переходе ламинарной формы течения в турбулентную, которым впервые начал заниматься О. Рейнольдс в 1880 г., теперь, после нескольких десятилетий безуспешной работы, нашел удачное объяснение. Теория устойчивости В. Толмина, подвергавшаяся долгое время возражениям с различных точек зрения, подтверждена теперь в полном своем объеме весьма тщательными опытами Г. Л. Драйдена и его сотрудников. При изложении проблемы турбулентного пограничного слоя я придерживался в основном полуэмпирических теорий, связанных с представлением о пути перемешивания, введенным Л. Прандтлем. Хотя, согласно последним исследованиям, эти теории несколько недостаточны, тем не менее пока не предложено взамен их ничего лучшего, что могло бы быть непосредственно использовано инженером. Напротив, полуэмпирические теории дают на многие практические вопросы вполне удовлетворительный ответ.  [c.12]

Эффективным методом изучения свойств плоского течения является метод комплексного переменного, получивший в аэродинамике большое распространение. Возможность применения указанного метода возникает ввиду следующих причин. Как было показано в 12 гл. III, основные функщш, характеризующие свойства плоского потенциального течения,— функция тока х, у) и потенциал скорости с х, у),— связаны между собой следующими уравнениями  [c.124]


Смотреть страницы где упоминается термин 120— Применения 318—319 —Уравнения течения 176 — Основные : [c.228]    [c.122]    [c.364]    [c.337]    [c.370]    [c.108]    [c.395]    [c.8]    [c.270]    [c.209]    [c.172]    [c.315]    [c.285]   
Термопрочность деталей машин (1975) -- [ c.0 ]



ПОИСК



Основные уравнения течения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте