Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффективные упругие модули гранулированных композито

Равенства (10) и (II) выражают эффективные упругие свойства композитов. Так как коэффициенты и не известны заранее, приведенные выше результаты имеют ограниченное практическое значение они дают эффективные упругие модули композитов лишь тогда, когда можно каким-либо способом оценить величины и Возможны различные аппроксимации коэффициентов концентрации средних напряжений, и деформаций простейшие из них приводятся в разд. III для. гранулированных и волокнистых композитов с изотропными фазами.  [c.70]

Модели, предлагаемые для определения коэффициентов концентрации средних напряжений и деформаций, а следовательно, и эффективных модулей волокнистых композитов, по существу, таковы же, как для гранулированных композитов. Однако анализ таких композитов сложнее, ибо они имеют большее число эффективных упругих модулей (предполагается трансверсальная анизотропия). Поэтому здесь приводятся только окончательные результаты исследований. Ради удобства эффективные модули снабжаются индексами L и Т. Индекс L относится к модулю Юнга вдоль волокон, а индекс Т к модулю поперек волокон. Индексы модуля сдвига р, определяют плоскость, в которой происходит сдвиг. Например, — эффективный модуль сдвига для деформаций в плоскости, перпендикулярной волокнам. Величина отрицательное отношение поперечной деформации к продольной при растяжении в продольном (поперечном) направлении. (Некоторые авторы дают разные определения величины v. p, поэтому читателю надо быть осторожным.) Коэффициенты Пуассона модули Юнга связаны соотношением  [c.79]


Большинство работ в этой области основано на предположении о статистической независимости. При этом допущении корреляционные функции высших порядков можно выразить через простые усреднения модулей составных частей двухфазного тела. Так, например, для эффективных упругих модулей объемного сжатия и сдвига в двухфазных гранулированных композитах Ставров и др. [141] получили выражения в виде рядов, впоследствии просуммированных Сендецки [132]  [c.89]

Некоторые примеры вычисления эффективных комплексных модулей были даны Хашином для гранулированных [46] и волокнистых [47, 48] композитов как при предположении о малости затухания, так и без этого предположения. Рисунки 9 и 10 показывают зависимости от частоты вещественных и мнимых частей комплексных модулей продольного сдвига Сд = Од 4- iG" полиизобутплена (при температурах выше Tg), армированного жесткими параллельными волокнами. График зависимости комплексного модуля сдвига (Уг = 0) от частоты взят из приведенных кривых, построенных Тобольским и Катсиффом [117]. Эти характеристики были получены с использованием упругого модуля сдвига Ga для так называемой модели цилиндрического массива [45]  [c.154]


Механика композиционных материалов Том 2 (1978) -- [ c.81 , c.82 ]



ПОИСК



Гранулирование

Модуль упругости

Модуль упругости вес модуля

Модуль эффективный

Эффективные упругие модули



© 2025 Mash-xxl.info Реклама на сайте