Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффективные упругие модули для волокнистых композито

Равенства (10) и (II) выражают эффективные упругие свойства композитов. Так как коэффициенты и не известны заранее, приведенные выше результаты имеют ограниченное практическое значение они дают эффективные упругие модули композитов лишь тогда, когда можно каким-либо способом оценить величины и Возможны различные аппроксимации коэффициентов концентрации средних напряжений, и деформаций простейшие из них приводятся в разд. III для. гранулированных и волокнистых композитов с изотропными фазами.  [c.70]

Модели, предлагаемые для определения коэффициентов концентрации средних напряжений и деформаций, а следовательно, и эффективных модулей волокнистых композитов, по существу, таковы же, как для гранулированных композитов. Однако анализ таких композитов сложнее, ибо они имеют большее число эффективных упругих модулей (предполагается трансверсальная анизотропия). Поэтому здесь приводятся только окончательные результаты исследований. Ради удобства эффективные модули снабжаются индексами L и Т. Индекс L относится к модулю Юнга вдоль волокон, а индекс Т к модулю поперек волокон. Индексы модуля сдвига р, определяют плоскость, в которой происходит сдвиг. Например, — эффективный модуль сдвига для деформаций в плоскости, перпендикулярной волокнам. Величина отрицательное отношение поперечной деформации к продольной при растяжении в продольном (поперечном) направлении. (Некоторые авторы дают разные определения величины v. p, поэтому читателю надо быть осторожным.) Коэффициенты Пуассона модули Юнга связаны соотношением  [c.79]


В основу книги легли лекции, читаемые автором на механико-математическом факультете. Излагаются теория эффективного модуля упругих, вязкоупругих и упруго-пластических композитов с периодической структурой, деформационная теория пластичности для структурно анизотропных тел. Большое внимание уделено слоистым и волокнистым композитам, для которых получены некоторые точные решения и описываются эффективные методы приближенного решения пространственных задач теории упругости.  [c.2]

П о б е д р я Б.Е., М о л ь к о в В.А. Эффективные модули упругости волокнистых и слоисто-волокнистых композитов// Вычислительная механика деформируемого твердого тела. 1990. Вып. 1. С. 41-63.  [c.359]

ЭФФЕКТИВНЫЕ МОДУЛИ УПРУГОСТИ КОМПОЗИТОВ С ВОЛОКНИСТЫМИ и ПЛАСТИНЧАТЫМИ НАПОЛНИТЕЛЯМИ  [c.166]

М о л ь к о в В. А., П о б е д р я Б. Е. Эффективные модули упругости однонаправленного волокнистого композита. — ДАН СССР, 1984, 275, Л" 3.  [c.305]

В данном томе излагаются методы определения характеристик материала по характеристикам его компонентов (теория эффективных модулей), анализируется линейно упругое, вязкоупругое и упругопластическое поведение композ1Щионных материалов, рассматриваются конечные деформации идеальных волокнистых композитов, описывается применение статистических теорий для определения свойств неоднородных материалов. Далее приводятся решения задач о колебаниях в слоистых композитах и о распространении в них воли, критерии разрушения анизотропных сред, описание исследования композиционных материалов методом фотоупругости.  [c.4]

Некоторые примеры вычисления эффективных комплексных модулей были даны Хашином для гранулированных [46] и волокнистых [47, 48] композитов как при предположении о малости затухания, так и без этого предположения. Рисунки 9 и 10 показывают зависимости от частоты вещественных и мнимых частей комплексных модулей продольного сдвига Сд = Од 4- iG" полиизобутплена (при температурах выше Tg), армированного жесткими параллельными волокнами. График зависимости комплексного модуля сдвига (Уг = 0) от частоты взят из приведенных кривых, построенных Тобольским и Катсиффом [117]. Эти характеристики были получены с использованием упругого модуля сдвига Ga для так называемой модели цилиндрического массива [45]  [c.154]

Расчету эффективных модулей композита с включениями различных геометрических форм начиная с первой половины бО-х гг. посвящено значительное число работ (в основном советских и американских исследователей). В числе первых и простейших выражений для эффективных модулей композита с включениями цилиндрической формы зависимости, полученные в работах [2, 143]. Более точные результаты на базе решения задачи теории упругости для сред, армированных двоякопериодической системой параллельных изотропных цилиндрических волокон, получены Г. А. Ваниным [24]. Несколько позже подход, использованный в указанной работе, был развит на более общий случай полых волокон с покрытиями [25]. Далее приведем выражения пяти констант ионотропного волокнистого композита, полученные в упомянутых работах и использованные нами в качестве эффективных модулей исходного структурного элемента при решении частных задач рационального армирования конструкций.  [c.29]


Для однонаправленного волокнистого композита тензор модулей упругости нулевого приближения и эффективный тензор модулей упругости могут быть определены аналитическими методами теории функций комплексной переменной. При этом возможен учет условий неидеального контакта. В качестве примера рассматривается определение эффективных характеристик одно-, направленного волокнистого композита при идеальном контакте между связующим и волокном.  [c.195]

При частоте ои = 10 с длина волны сдвига в волокнистой среде по сравнению с классической теорией возрастает всего на 0,15 %, а при о = 5 10 с она превышает классическую на 15 %. Дальнейшее уточнение требует учета большего числа членов в уравнении частот и влияния дифракционного рассеяния. При сравнении зависимости эффективных упругих характеристик от объемного содержания волокон в одноуровневых волокнистых композитах и таковых с двухуровневой структурой обнаружены аномалии. В частности, формула для модуля сдвига в последнем случае имеет вид  [c.161]

С каждой неоднородной средой теория эффективного модуля связывает некоторую эквивалентную однородную среду. При этом, если все компоненты композита являются изотропными, эквивалентная среда оказывается, вообще говоря, анизотропной. Так, для слоистого композита эквивалентная среда, как было установлено в гл. 5, является трансверсально изотропной, а для волокнистых однонаправленных композитов и композитов с ортогональным армированием, как было установлено в гл. 6, эквивалентная среда является ортотропной (с числом незаёисимых упругих постоянных от 6 до 9) или трансверсально изотропной.  [c.234]


Смотреть страницы где упоминается термин Эффективные упругие модули для волокнистых композито : [c.86]    [c.158]   
Механика композиционных материалов Том 2 (1978) -- [ c.83 , c.84 ]



ПОИСК



Волокнистость

Модуль упругости

Модуль упругости вес модуля

Модуль эффективный

Эффективные упругие модули



© 2025 Mash-xxl.info Реклама на сайте