Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

152 — при радиальном поверхностном

Радиальные поверхностные силы имеют наибольшие значения у граничной плоскости (при 2 = 0), уменьшаются с глубиной и при 2 = 00 обращаются в нуль. Касательные поверхностные сипы имеют нулевое значение при 2 = 0 и при 2 = оо, а наибольших значений  [c.103]

Оболочка свободно оперта по торцам и несет лишь нормально приложенную (радиальную) поверхностную нагрузку 2 = 2 (а, Р). Длина оболочки /, радиус кривизны Р (см. рис. 8).  [c.206]

Принципиальная схема одного из способов горячей накатки показана на рис. 3.33. Поверхностный слой цилиндрической заготовки 1 нагревается током повышенной частоты с помощью индукторов 2. Зубчатый валок получает принудительное вращение и радиальное перемещение под действием силы со стороны гидравлического цилиндра. Благодаря радиальному усилию зубчатый валок 4, постепенно вдавливаясь в заготовку /, формует на ней зубья. Ролик 3, свободно вращаясь на валу, обкатывает зубья по наружной поверхности. После прокатки прутковой заготовки ее разрезают на отдельные шестерни. Процесс осуществляют на полуавтоматических установках, например на полуавтомате горячего накатывания зубьев конических колес диаметром 175—350 мм и модулем до 10 мм.  [c.93]


Представление энергии смеси в виде (1.1.17), на основе которого и записываются уравнения энергии в этой главе, справедливо, если каждую фазу считать локально однородной, т. е. в каждом элементарном объеме смеси вещество каждой фазы, в том числе и включений (капель, частиц, пузырьков и т. д.), принимается однородным вплоть до самой поверхности раздела фаз, и поэтому энергия каждой составляющей считается пропорциональной ее массе. Это равносильно тому, что особенности поверхностного слоя вещества толщиной порядка радиуса молекулярного взаимодействия (- 10 Л1),являющегося границей раздела фаз, далее не учитывается. Для этого необходимо, чтобы размеры включений были во много раз больше толщины этого слоя. Кроме того, в (1.1.17) и везде в гл. 1 будет учитываться только та часть кинетической энергии смеси, которая связана с макроскопическим движением фаз со скоростями U . В действительности имеются еще мелкомасштабные (с характерным линейным размером, равным по порядку размеру неоднородностей смеси) течения (например, радиальные пульсационные движения вокруг пузырьков, обратные токи несущей жидкости около включений из-за их относительного движения в этой жидкости, хаотические движения включений). В большинстве существующих теорий взаимопроникающего движения кинетическая энергия такого движения не учитывается. Таким образом в качестве первого этапа в гл. 1 рассматривается случай, когда энергия смеси при однородном представлении энергий фаз является аддитивной по массе фаз. Учет поверхностных явлений в рамках представлений Гиббса и кинетической энергии мелкомасштабного движения фаз имеется в главах 2—4.  [c.30]

Подчеркнем, что полученное уравнение есть следствие предположения, что именно разность осредненных напряжений в фазах, определяющая фиктивные напряжения, формирует по линейному закону Гука деформации скелета из-за смещений зерен друг относительно друга. Таким образом, это уравнение задает совместное деформирование фаз с учетом несовпадения давлений в фазах из-за прочности скелета. В газожидкостных смесях давления в фазах могли различаться только из-за поверхностного натяжения и радиальных инерционных эффектов, описываемых уравнениями типа Рэлея — Ламба для размера пузырьков, а следовательно, и для объемного содержания фаз, когда разница между осредненными давлениями в фазах воспринималась поверхностным натяжением и радиальной мелкомасштабной инерцией и вязкостью жидкости. В насыщенной пористой среде разница между осредненными напряжениями воспринимается прочностью межзеренных связей.  [c.237]

Рассмотрим сначала истечение в атмосферу через отверстие с острой кромкой (рис. 6.32). Как и при входе в трубу, наблюдается сжатие струи за отверстием. Причиной этого является инерционность жидких частиц, двигающихся к отверстию из резервуара по радиальным направлениям. Они, стремясь по инерции сохранить направление движения, огибают кромки отверстия и образуют поверхность струи на участке сжатия. За сжатым сечением струя незначительно расширяется, а при достаточно большой скорости истечения может распадаться на отдельные капли. Если отверстие не круглое, а, например, квадратное или треугольное, то наблюдается явление инверсии струи, т. е. изменение формы ее поперечного сечения по длине. Например, струя, вытекающая из квадратного отверстия, приобретает на некотором расстоянии крестообразную форму, что объясняется действием поверхностного натяжения и инерции.  [c.176]


Первое предположение означает, что не учитывается поверхностное натяжение и силы инерции в жидкости. Оно оправдано, если радиус пузырька R существенно больше критического радиуса зародыша Rt, а скорость и ускорение радиального движения слоев жидкости на поверхности умеренные. Температура пара в пузырьке равна температуре насыщения Т (р ) при давлении системы. Ту же температуру имеет жидкость на границе пузырька. Поток тепловой энергии к границе пузырька, обусловленный температурным напором доо - Т , определяет интенсивность испарения жидкости внутрь пузырька. Ввиду постоянной плотности пара в пузырьке движение пара в нем отсутствует, а интенсивность испарения как и в динамической схеме роста, оказывается в соответствии  [c.250]

Эволюция радиального движения определяется радиальной инерцией жидкости и перепадом давлений в ней, который является частью перепада рг — Рс (между давлением газа и давлением жидкости вдали от пузыря). Часть этого перепада уравновешивается поверхностным натяжением и вязкостью жидкости, а остальная — радиальной инерцией жидкости. Давление газа в пузырьке обычно можно считать однородным рг = Рг ), см. 4 гл. 2).  [c.64]

Поверхностные теплообменные аппараты разделяются на регенеративные и рекуперативные. В первых теплота горячих газов аккумулируется насадкой (металлические шары или листы, керамическая сыпучая масса, кирпичи и др.), а затем передается нагреваемому газу путем его продувания через горячую насадку. Примером может служить вращающийся регенеративный воздухоподогреватель, показанный на рис. 20.2. Он состоит из вращающегося ротора /, собранного из пакетов тонких гофрированных листов 2 (насадка). Эти листы образуют продольные каналы для прохода газов. Ротор разделен на 12 секторов радиальными перегородками, с помощью которых поток холодного воздуха отделяется от потока горячих газов. Подвод и отвод газов и воздуха осуществляются через патрубки, расположенные с торцевых сторон корпуса 3 теплообменника. Ротор вращается с частотой 2...10 об/мин, благодаря чему теплоаккумулирующая насадка проходит поочередно через зону нагретых газов, где она воспринимает теплоту, и через зону холодного воздуха, где теплота передается от насадки к воздуху.  [c.242]

При испытании на долговечность подшипников качения (рис. 158, а) основной узел испытательной машины состоит из вращающегося вала /, на котором установлено две пары подшипников. Одна пара смонтирована в узле радиальной нагрузки 5, а два других подшипника помещены по концам вала в корпусе машины 1120]. Имеется специальный узел 2 для создания осевой нагрузки. Нагрузка создается гидравлически от специальной системы и может изменяться в необходимых пределах. Может регулироваться также и частота вращения вала. В стенде предусмотрены система смазки подшипников и измерения их температуры. Критерием окончания испытания является шум подшипников или повышение температуры, что происходит при усталостном разрушении поверхностных слоев тел качения и износе беговых дорожек.  [c.493]

Известно, что если проводник свернуть в кольцо или спираль и пропустить через него переменный ток, то наибольшая его плотность будет на внутренней спирали проводника. Это явление, называемое кольцевым эффектом, тем более ярко выражено, чем больше по отношению к диаметру кольца радиальная высота проводника и чем ярче выражен поверхностный эффект.  [c.17]

Если среда ограничена двумя поверхностями, расстояние между которыми соизмеримо с длиной волны, то в такой среде (тонкой пластине) распространяются нормальные волны (Лэмба). В стержнях могут возникать также изгибные, крутильные и радиальные волны. При дефектоскопии деталей ГШО используют продольные, поперечные и поверхностные волны.  [c.21]

При зачистных проходах с увеличением скорости вращения круга улучшается чистота поверхности и уменьшается поверхностный наклеп, что объясняется уменьшением радиальной составляющей усилия шлифования. Так, при повышении скорости вращения круга увеличивается число контактов круга с обрабатываемой поверхностью в единицу времени, вследствие чего толщина слоя и усилие, приходящееся на одно абразивное зерно, уменьшаются. Подобное воздействие на поверхностный слой оказывают  [c.106]

После деформации брус приобретает вид, показанный на рис. 11.4, б. Продольные прямые линии на боковой поверхности искривляются и превращаются в винтовые. Боковая поверхность сохраняет форму круглой цилиндрической поверхности, высота цилиндра не изменяется, поперечные линии и торцы остаются плоскими и поворачиваются относительно оси цилиндра. Относительный поворот поперечных линий пропорционален расстоянию между ними. Радиальные линии на торцах поворачиваются и остаются прямыми. Описанная картина деформации сохраняется при любом отношении высоты и диаметра цилиндра. При другом законе распределения внешних поверхностных сил, приложенных к торцам и создающих такой же по величине, как и в первом случае, внешний момент Э)1, получается несколько иным и характер деформации бруса (рис. 11.4, а). Однако это отличие ощутимо лишь в окрестности торцов, что полностью согласуется с принципом Сен-Венана.  [c.16]


Непосредственная зависимость ошибки регулировки от размера инструмента не единственная форма связи такого рода. Например, ту же заготовку винта иногда изготовляют на токарном автомате (с накаткой резьбы на другом станке), и тогда уровень настройки зависит не от размера, а от положения инструмента — и то лишь при прочих равных условиях. К числу прочих, далеко не всегда равных условий, от которых может зависеть математическое ожидание диаметра заготовки винта при обработке на токарном автомате, относятся, например, радиальная составляющая усилия резания, которая в свою очередь зависит от геометрии резца, припуска, физико-механических свойств прутка, и жесткость системы станок — приспособление — инструмент — деталь, температура системы и пр. На операции металлопокрытия ошибка регулировки (отклонение математического ожидания толщины нанесенного слоя) зависит от концентрации раствора, силы тока, длительности процесса. Бывают операции с многочисленными техническими факторами ошибки регулировки и очень сложной схемой их взаимодействия (термообработка, шлифование применительно к такому признаку качества как поверхностная твердость и пр.).  [c.41]

На рис. 82, а изображена конструкция капельной ртутной опоры, у которой ртуть 3 помещена в цилиндрическом углублении неподвижной части прибора 1. На ртуть опирается легкая подвижная система 2, имеющая в месте соприкосновения с ртутью углубление в виде поверхности ртутной капли, в вер-Ш ине которого сделано маленькое отверстие 4 для выхода воздуха, что необходимо для лучшего прилегания ртути к поверхности углубления. Если на подвижную систему действует радиальная R и осевая силы, то за счет поверхностного натяжения ртути смещение подвижной системы в сторону будет ограничено какой-то величиной, пропорциональной радиальной и осевой нагрузкам (рис. 82,6).  [c.162]

Стенд оборудован циркуляционной системой смазки, обеспечивающей возможность подачи в испытываемые подшипники масла при определенном давлении, температуре и в требуемом количестве. Параметры подаваемого масла и количество его можно варьировать. Создаваемое осевое усилие определяется по значению давления в пневмоцилиндре. В процессе испытания измеряются распределение давления масла в гидродинамическом масляном клине (по всем колодкам осевого подшипника и в радиальном подшипнике), температуре масла и поверхностного слоя металла в подшипниках, расход масла и его температура на входе и выходе из подшипников. Периодически проводится осмотр состояния трущихся поверхностей подшипников. Экспериментальная доводка подшипников осуществляется на натурных образцах.  [c.230]

Проволока, проталкиваемая через направляющую, последовательно встречает на своём пути два расположенных на одной и той же окружности пальца или ролик и завивается в пружину. Размер диаметра пружин регулируется соответствующим радиальным перемещением пальцев или ролика. Чтобы избежать поверхностных дефектов, пальцы изготовляют из мягкой стали, но это ведёт к их быстрому износу и частым переналадкам станка. При изготовлении пружин, не работающих на усталость, допускается применение пальцев из твёрдого сплава.  [c.206]

Так, отсутствие шпонок и шпоночных пазов снижает количество деталей, исключает ослабление их поперечных сечений, ликвидирует местную концентрацию напряжений и, следовательно, позволяет применить упрочняющую технологию поверхностный наклеп, объемную закалку без риска образования трещин. А это, в свою очередь, позволяет уменьшить радиальные размеры конструкций примерно на одну треть, а их вес — почти вдвое. Уменьшаются и осевые размеры — больше нет нерабочих участков, образующихся при выходе фрезы.  [c.41]

По способу образования и структуре поверхности контакта ЦТА относится к барботажных аппаратам. В нем активным агентом является газ, который пересекает слой жидкости, диспергируя ее и образуя поверхность контакта. При малой скорости в барботажных аппаратах газ образует поверхность контакта в виде всплывающих пузырей. При больших скоростях газа поверхность контакта приобретает капельную структуру, что характерно и для ЦТА, в котором скорости газа значительно больше скорости всплытия пузырей. Однако это относится только к гидродинамике самого слоя газожидкостной смеси, если рассматривать поперечное течение газа со скоростью Wr. В остальном имеются существенные отличия. На входе газа в слой между решеткой и кольцевым вращающимся слоем образуется газовая прослойка, обеспечивающая равномерное распределение газа и равномерную радиальную скорость по всему слою. Плавный, безударный вход газа в слой уменьшает гидродинамическое сопротивление. В то же время перемещение слоя газожидкостной смеси со значительными окружными скоростями и интенсивное перемешивание частиц жидкости с потоком газа вследствие вихревого движения приводит к дополнительной турбулизации потоков во всем объеме слоя, что способствует интенсификации процессов тепло- и массообмена. Наличие тангенциальной составляющей скорости газа увеличивает продолжительность контакта газа с жидкостью, так как движение частиц жидкости происходит по спиральной траектории и за несколько витков частицы многократно обтекаются потоком газа. Увеличение веса жидкости в поле центробежных сил препятствует образованию пены, так как поверхностного натяжения становится недостаточно для ее формирования. Отсутствие пены в ЦТА, сковывающей подвижность отдельных мелких частиц жидкости и ограничивающей скорость газа (по условиям выноса пены из аппарата), также позволяет повысить интенсивность тепло- и массообмена.  [c.15]

Из (8.6) следует, что время действия импульса давления пропорционально скорости соударения и радиусу капли. Для капли размером 100 мкм при скорости соударения 600 м/с время взаимодействия составляет 1,3-10 с. Динамическое нагружение упругого полупространства сопровождается волновыми процессами, возник- новением волн напряжений. Наибольшими являются радиальные растягивающие напряжения, обусловленные поверхностной волной Релея. Для некоторых хрупких материалов экспериментально показано, что разрушения возникают вблизи границы растекания капли.  [c.282]

Благодаря тому, что технологический процесс холодной ковки осуществляется преимущественно пластическим деформированием заготовки, а не снятием стружки с нее, отходы металла по сравнению с обработкой резанием снижаются до 50%, а иногда вовсе отсутствуют. В результате упрочнения переориентации волокон и образования остаточных напряжений в поверхностной зоне металла при холодном обжатии ротационной и радиальной ковкой повышается твердость и усталостная прочность изделий от 10 до 70 /о, что увеличивает срок службы их при  [c.103]

Исследование разрушенного диска показало, что в процессе эксплуатации от центрального отверстия в диске зародилось несколько радиальных поверхностных полуэллиптических трещин в зоне расположения передних шлиц, которые были удалены в ремонте. Развитие одной из трещин до критических размеров привело к окончательному разрушению диска. Разрушение диска имело ряд особенностей, принципиа.тьно отличающих его от ранее наблюдавшихся усталостных разрушений титановых дисков двигателей разных типов. Эти особенности заключались в следующем (рис. 9.35)  [c.507]


Необходимо отметить случай несжимаемого твердого шара. Этот случай можно рассматривать, полагая, что Л стремится к нулю, а X — к бесконечности, но так, что ХЛ остается конечным. Частный интеграл для массовых сил ( 174) не дает никакого смещения, но приводит к напряжению на границе г=а, нормальнаи составляющая которого равна —рУ . Смешение, следовательно, будет таким же, как и в случае несжимаемого шара, который деформирован чисто радиальным поверхностным напряжением ), равным и может быть айдено по методу 173, 2), если положить  [c.266]

Шар равновесие—, 23, 29, 261 деформация — из анизотропного материала, 176 — под дейстьием радиальных сил, 152 — при радиальном поверхностном смещении 263 — при радиальном поверхностном напряжении, 263 кручение—, 264 — под действием массовых сил, 265, 269 — под действием сил взаимного притяжения, 153 гравитирующий несжимаемый —, 2б7, 269 вращающийся —, 272 — с заданным поверхностным смещением, 277 — с заданным поверхностным напряжением, 279 колебания—, 31, 290—300.  [c.674]

Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

Расчеты показывают, что при реализуемых степен51х закрутки потока в вихревой камере поверхностная сила пренебрежимо мала по сравнению с центробежной силой и силой Стокса. Тогда с учетом радиального фадиента давления и изменения кинематических параметров по радиусу запишем изменение равнодействующей сил, действующих на каплю, в дифференциальном виде  [c.385]

В этих условиях наблюдалось формирование поверхностных периодических структур но кроях незатронутых лазерной гравировкой участков металлических пленок. ППС располагались вдоль траектории движения фокального пятно лазерного излучения. Зона распространения ППС в радиальном по отношению к фокальному пятну направлении в большинстве случаев не превышало 10—15 мкм, однако наблюдались и структуры, захватывавшие полосы необработанного покрытия до 250 мкм. При этом ППС группировались в полосы с уменьшающейся контрастностью в поле зрения микроскопа. ППС дальней зоны качественно отличаются от ППС ближней зоны. Изморенные в дальней зоне периоды ППС составляли величины 3— 3,5 мкм. В ближней зоне величина периода была приблизительно такая же, но строгая периодичность норушолась, в ряде случаев элементы структур располагались как лучи, радиально расходящиеся от дефектов лазерной гравировки.  [c.96]

Используя средине радиальные давления фаз р а п pin на мс/кфазной поверхности (см. (1.3.10) — (1.3.14)), которые различаются только из-за поверхностного патя/ксння, можно записать следующие выражепия  [c.81]

Формально эти условия выполняются при %1 оо и В этом режиме, если можно пренебречь поверхностным натяжением и вязкостью жидкости, процесс определяется только инерцией радиального движения жидкости и описывается уравнением Рэлея — Ламба, которое в случае Ре = onst можно привести к виду, удобному для интегрирования  [c.207]

Результирующая поверхностных сил в радиальном направлении равна нулю из условия симметрии. Если величину прпложенно силы обозначить через Р, то имеем  [c.394]

Третий — с электромагнитным формообразователем. Для обеспечения одинаковых тепловых условий в зоне выращивания каждого из прутков предусмотрен привод вращения пьедестала. Печь снабжена специальным индуктором с несколькими (по числу выращиваемых кристаллов) кольцевыми витками и расположенной над индуктором медной водоохлаждаемой щайбой, имеющей над каждым из витков индуктора отверстие, соосное с витком. Эта шайба играет роль системы короткозамкнутых витков, концентрирующих злектромагнит-ное поле под фронтом кристаллизации и ослабляющих его над этим фронтом. Тем самым повышается осевой температурный градиент в растущих кристаллах и увеличивается скорость кристаллизации. Формообразование одинаковых жидких столбиков расплава обеспечивается естественной симметрией ориентации сил поверхностного натяжения и симметричной радиальной направленностью ЭМС. Вращения выращиваемых прутков не требуется. Оплавлеше торца пьедестала осуществляется также полем описанного одночастотного формообразующего индуктора. Технические показатели процесса группового выращивания круглых прутков с электромагнитным формообразованием превосходят полученные первыми двумя методами, а оборудование проще, чем при других конструкциях, и реализуется на базе серийно выпускаемой высокочастотной установки Криеталл-502 [75].  [c.112]

От очага разрушения в материале диска развивалась поверхностная полуэллиптическая трещина в радиальном направлении (см. рис. 9.506 ). Развитие трещины от очага шло по механизму вязкого внутризеренного разрушения материала с формированием на изломе преимущественно бороздчатого рельефа. Начальный шаг усталостных бороздок, пересчитанный из плотности бороздок, составлял 0,15-0,3 мкм. Шаг бороздок в панравле-нии развития трещины закономерно возрастал и при критической длине трещины около 12 мм в глубину достиг 5 мкм (рис. 9.51). Отмеченные параметры излома диска указывают на разрушение материала в области МЦУ.  [c.529]

Визуальный анализ раскрытых изломов дисков по трещинам показал, что они зарождались на поверхности одного или нескольких крепежных отверстий в ступице со стороны центрального отверстия и развивались в радиальном направлении к центральному отверстию (рис. 10.6). После прорастания трещины на всю толщину перемычки между крепежным и центральным отверстиями дальнейшее развитие трещин происходило в направлении обода диска с опасностью его разрушения по радиальному сечению. На участке перемычки, расположенной между отверстиями под болт крепления дисков к валу турбины и центральным отверстием дисков, изломы окислены на большей части до золотисто-серого цвета, а их строение на всей поверхности характеризуется внутризерен-ным ростом трещины, типичным для усталостного разрушения жаропрочных сплавов. У поверхности отверстия под болт, вблизи переднего торца ступицы, у каждого диска имеется зона наиболее интенсивного окисления поверхности, указывающая на длительный период развития трещины, а также свидетельствующая о том, что начальный этан разрушения связан с развитием в диске несквозной поверхностной трещины полуэллиптической формы (см. рис. 10.6 ).  [c.543]

Деталь не деформируется при радиальном перемещении захватных органов в зонах приема и выдачи деталей. Материалом для изготовления захватных органов транспортных роторов служат конструкционные стали марок 35, 45 с закалкой поверхностного слоя (нагрев с помощью ТВЧ) на глубину до 2 мм до твердости HR 30—60. В тех случаях, когда по техническим условиям изготовления продукции на поверхности детали не допускается появление царапин, захватные органы транспортных роторов изготовляют из ударопрочного полистирола или акрилонитрилбутадиенстирольного пластика.  [c.301]

Коррозия циркалоя в реакторе BWR. Вильямсон и др. [38] опубликовали результаты 26 металлографических анализов окисных пленок на 10 топливных стержнях с оболочками из циркалоя-2 и циркалоя-4, экспонировавшихся в BWR от 200 до 365 дней при поверхностной температуре около 280° С (кипение). Содержание водорода в 23 пробах от 6 различных топливных стержней было определено с помощью горячей вакуумной экстракционной техники. Привес за счет коррозии рассчитан в предположении, что 15,6 мг/дм соответствует толщине окиси в 1 мкм. Наблюдаемые толщины окиси изменялись от 1 до 67,3 мкм. Все окисные пленки толще 8—10 мкм (156 мг1дм ) содержали как радиальные, так и периферические прожилки. Слишком тяжелые окисные пленки были обнаружены около дефектов или под дистанционирующими проволочками. Существенное изменение толщины пленок наблюдалось при изменении теплового потока и потока тепловых нейтронов. На рис. 8.11 показано сравнение распределения -у-излучения по стержню (выгорание) и изменение толщиш ОКИСИ вдоль стержня. В нижней  [c.249]

Углеграфитовые и металлографитовые антифрикционные материалы (табл. 7) применяют в качестве вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, поршневых и радиальных уплотнений. Они способны работать без смазки, при высоких или низких температурах, больших скоростях, в агрессивных средах и т. д. При работе пары металл—углеграфит изнашивается графитовая деталь. На поверхности металла образуется графитовая пленка, а на графитовой детали — блестящий слой из ориентированных кристаллов графита. Именно образование этих поверхностных слоев обеспечивает устойчивый режим скольжения и малый коэффициент трения.  [c.385]


Топливо, проходя по спиральным канавкам, получает вращательное движение. Возникающие внутри потока центробежные усилия способствуют быстрому распадению струи после её выхода из сопла. Однако сопла подобных конструкций в современных моделях применяются редко. Последнее объясняется низким коэфициентом <р истечения сопла и относительно малым проникновением струи в сжатый воздух. Сопла этого типа не улучшают качества распыливания даже при повышенных давлениях в ЗиО—500 кг1смК Силы аэродинамического сопротивления газовой среды возрастают с увеличением скорости движения топлива, относительной скорости среды, в которую впрыскивается топливо, плотности воздуха и величины лобовой поверхности струи. Внутренние же силы обусловливаются главным образом поверхностным натяжением топлива. Наравне с этим также должны быть учтены те радиальные возму щения (при выходе из соплового отверстия), которые можно вызвать в обычном сопле при турбулентном потоке топлива, либо применением специальной конструкции распылителя, при истечении из которого значительно усиливаются радиальные составляющие, увеличивающие конус.распыла.  [c.239]


Смотреть страницы где упоминается термин 152 — при радиальном поверхностном : [c.112]    [c.113]    [c.52]    [c.188]    [c.385]    [c.230]    [c.138]    [c.142]    [c.233]    [c.400]    [c.120]    [c.185]    [c.407]   
Математическая теория упругости (1935) -- [ c.0 ]



ПОИСК



152 — при радиальном поверхностном вращающийся —, 272 — с заданным

152 — при радиальном поверхностном заданным поверхностным напряжением, 279 колебания

152 — при радиальном поверхностном поверхностным смещением

152 — при радиальном поверхностном сил взаимного притяжения, 153 гравитирующий несжимаемый

152 — при радиальном поверхностном смещении 263 — при радиальном поверхностном напряжении, 263 кручение—, 2Ь4 — под действием массовых сил, 265, 269 — под действием



© 2025 Mash-xxl.info Реклама на сайте