Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбины газовые в промышленност

Интересно отметить, что радиальные паровые турбины появились в промышленности в 1912 г., т. е. значительно позже осуществленной П. Д. Кузьминским газовой турбины радиального типа таким образом, он является одновременно изобретателем и радиальной многоступенчатой турбины.  [c.476]

Существуют различные типы газовых компрессоров. Это могут быть поршневые машины, в которых поступающий газ низкого давления сжимается в цилиндрах поршнем. Поршневые компрессоры часто применяются для получения газа с очень высокими давлениями. В авиационной технике и в промышленности вообще большое распространение получили компрессоры непрерывного действия, в которых передача энергии протекающему газовому потоку в направляющих каналах или прямо в открытом объеме производится с помощью специальных вращающихся лопастей или систем лопаток. Вращающееся колесо с системой лопаток, или вентилятор, или воздушный винт, или водяной винт являются основными и типичными элементами компрессоров, передатчиков энергии газу от двигательных систем электромоторов, двигателей внутреннего сгорания, турбин и т. п.  [c.103]


Органическое топливо (газообразное, жидкое и твердое) широко используют в разного рода тепловых установках в топках паровых котлов паротурбинных электростанций, в промышленных печах, в камерах сгорания газовых турбин н воздушно-реактивных двигателей, в цилиндрах  [c.222]

В топках паровых котлов, в промышленных печах (кроме шахтных печей), в двигателях внутреннего сгорания в камерах сгорания газовых турбин горение ведут с наибольшей полнотой и получают продукты полного сгорания.  [c.223]

Условия сгорания топлива в разных теплотехнических устройствах и подготовка их к сжиганию различны, как различны и сами топлива. Например, в топках паровых котлов и в промышленных печах топливо сгорает при атмосферном давлении, в то время как в камерах сгорания газовых турбин и в цилиндрах двигателей внутреннего сгорания топливо горит при давлении, во много раз превышающем атмосферное. Несмотря на указанное выше различие, в процессах сгорания много общего. Общие главные вопросы вкратце излагаются ниже.  [c.223]

Строительство промышленных газовых турбин началось в XIX в., но стало широко развиваться с 30-х годов XX в. в связи с освоением выпуска жароупорных сталей.  [c.326]

Для структуры машиностроения, далее, характерно ускоренное и опережающее развитие тех его отраслей, которые в наибольшей мере влияют на рост производительности общественного труда, на процессы расширенного воспроизводства, на повышение жизненного уровня советского народа. Так, в течение 1959—1967 гг. особенно быстро развивались химическое машиностроение, являющееся материальной базой химизации народного хозяйства, производство электросварочного оборудования, необходимого для внедрения прогрессивных сварочных процессов в промышленности и строительстве, энергомашиностроение (в первую очередь, производство паровых, гидравлических и газовых турбин, предназначенных для оснащения вновь сооружаемых электрических станций).  [c.16]

Вайд и Мейер [3] также указывают, что не обнаружили следов износа после примерно 3600 ч сжигания отходов углеобогащения мельче 10 мм в экспериментальной топке площадью 2,61 м со слоем высотой = 2,4 м. В погруженных трубах нагревали воздух до 730°С (для газовой турбины). Не обнаружен износ и в промышленной топке для факельно-слоевого сжигания сланца [30].  [c.83]

Данные таблицы показывают народнохозяйственное значение внедрения газовых турбин в промышленность.  [c.345]

Особенно благоприятные условия для использования газовых турбин имеются в химической промышленности, так как в ней имеются технологические процессы, требующие большого количества сжатого воздуха и выделяющие большое количество тепла при реакциях. К середине 1959 г. во всей химической промышленности работало 35 газотурбинных установок 33 приводные общей мощностью 145 800 л. с. и две энергетические общей мощностью 15 000 кет.  [c.11]

В связи с вращением лопатки испытывают действие напряжений от центробежных нагрузок. Центробежное усилие, приложенное к единице массы на полувысоте рабочей лопатки, в 13-90 тыс. раз превышает силу тяжести. Напряжения от центробежных сил находятся в диапазоне от 69 МПа в среднем сечении лопастей лопаток первой ступени промышленных турбин до 277 МПа в сечении корневой части интенсивно охлаждаемых рабочих лопаток турбины авиадвигателей и последней ступени промышленных газовых турбин. Напряжения около 17 МПа возникают на последних ступенях турбовентиляторов авиадвигателей. Стремясь извлечь максимум энергии рабочего потока в промышленных газотурбинных установках, размеры кольцевой зоны последней ступени делают больше, чем в турбинах авиадвигателей. Поэтому у первых напряжения в корневом сечении рабочих лопаток обычно выше, чем у последних. Сочетание повышенных температур и напряжений порождает проблему ползучести рабочих лопаток и делает ее предметом главной заботы конструкторов, которые обычно выбирают для изготовления лопаток один из сплавов, обладающих наиболее высоким сопротивлением ползучести.  [c.60]


Несмотря на упомянутые выше недостатки, комбинированные установки, в которых четырехтактный двигатель имеет газовую связь с турбиной и компрессором, получили наиболее широкое распространение в промышленности и на транспорте.  [c.33]

Централизованные системы смазки под давлением, от простейших до сложных автоматизированных, используются в разнообразных областях в двигателях внутреннего сгорания, паровых и газовых турбинах, станках, прокатных станах и вообще в промышленных установках и машинах.  [c.363]

При современном уровне развития газовых турбин вполне целесообразно применять их в промышленных и транспортных силовых установках.  [c.398]

Газовые турбины в промышленности. За  [c.440]

В современной технике непрерывно расширяется применение металлических конструкций или их деталей, работающих в условиях высоких температур. Это обусловлено широким развитием химических производств, строительством в промышленности высокопроизводительных печей, созданием мощных энергетических установок котлов, паровых и газовых турбин, реактивных двигателей. Металлические материалы, применяемые для изготовления деталей и конструкций, работающих при высоких температурах, должны обладать достаточной жаростойкостью и жаропрочностью.  [c.79]

Сжигание топлива в теплотехнических установках преследует цель выделить тепло за счет экзотермических химических реакций и получить раскаленные продукты полного сгорания (дымовые газы) или продукты газификации. Например, в топках паровых котлов, в промышленных печах (кроме шахтных печей), в двигателях внутреннего сгорания, в камерах сгорания газовых турбин горение ведут с наибольшей полнотой и получают продукты полного сгорания.  [c.262]

Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры. Часто используют авиационные двигатели, выработавшие свой ресурс.  [c.61]

Отливки из высокопрочного чугуна применяют в тяжелом и энергетическом машиностроении, в металлургической промышленности при работе в условиях больших статических и динамических нагрузках. Это детали прокатного, кузнечно-прессового и горнорудного оборудования, а также дизелей, паровых, газовых и гидравлических турбин (прокатные валки, коленчатые валы, корпуса вентилей, паровых турбин и др.) массой от нескольких килограммов до нескольких десятков тонн,,  [c.162]

Вращающиеся диски широко применяют в паровых и газовых турбинах, в компрессорах, вентиляторах и машинах химической промышленности. Диски подвергаются нагрузкам, вызывающим их растяжение и изгиб, а также действию высоких температур. Существенное значение имеют центробежные силы. Обычно нагрузки и температурное поле симметричны относительно оси диска, вследствие чего и напряжения являются функциями только расстояния от оси вращения.  [c.460]

Основные понятия. В современной технике все большее распространение получают машины, аппараты и приборы, в которых совершение механической работы связано с преобразованием потенциальной энергии (энергии давления) газа или пара в кинетическую энергию потока (струи) рабочего тела. Изучение рабочих процессов устройств, основанных на использовании кинетической энергии потока, приобретает все большее значение, особенно в связи с развитием современной теплоэнергетики (паровые и газовые турбины), ракетной техники и реактивных двигателей, химической промышленности (инжекторы, форсунки, горелки н пр.) и холодильной техники.  [c.6]

Благодаря своим качествам гидромуфты нашли себе применение в автомобильной и тракторной промышленности, в судостроении, строительных, подъемных и дорожных машинах, в шахтных машинах, газовых турбинах, ТЭЦ и пр.  [c.229]

Цикл газотурбинной установки. На рис. 1.61 дана принципиальная схема газотурбинной установки (ГТУ). В камеру сгорания 2 поступает сжатый воздух из компрессора I и жидкое топливо из топливного насоса 4. Полученные в камере сгорания продукты сгорания поступают в сопловой аппарат а газовой турбины 3, в котором осуществляется процесс превращения потенциальной (внутренней) энергии продуктов сгорания в кинетическую энергию потока, поступающего на лопатки в диска б турбины. Каждая соседняя пара лопаток образует криволинейный канал, в результате движения по которому энергия газового потока расходуется на вращение диска турбины. Сжигание топлива в камере сгорания может происходить как изобарно, так и изохорно однако в промышленности получили распространение главным образом газовые турбины с изобарным подводом теплоты.  [c.90]

Наряду с поставками для нужд электроэнергетики генераторов для паровых, газовых и гидравлических турбин, предприятиями электротехнической промышленности осуществлялась комплектация таких механизмов, как насосы, вентиляторы, дымососы, дизель-генераторы, крупными электрическими машинами, конструкции которых с учетом новейших требований разработаны в текущей пятилетке (синхронные генераторы СБГД-6300, электродвигатели серий ВАЗ, АБЦ и Др.).  [c.262]


Значительно расширились также процессы автоматизации в промышленности и на транспорте. Если в первые послевоенные годы автоматизация охватывала только отдельные технологические и энергетические агрегаты, то в наше время все чаще внедряются установки комплексной автоматизации в виде автоматических линий, цехов и предприятий. Успешно работают автоматизированные системы управления технологическими процессами в энергетике, черной и цветной металлургии, нефтедобывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности. К числу наиболее совершенных относятся принятые в опытнопромышленную эксплуатацию автоматизированные системы управления блоком котел — турбина — генератор мощностью 200 тыс. кет и процессом каталитического крекинга. В обеих системах электронно-вычислительные машины автоматически управляют ходом процесса, выполняя расчет его оптимальных параметров и обеспечивая стабилизацию режимов.  [c.14]

Особенностью режимов нагружения деталей авиационных ГТД является высокая температура основных деталей — рабочих и сопловых лопаток турбины, дисков, элементов проточной части газового тракта. По данным зарубежных исследователей [7, 8 и др.], температура газа перед турбиной в транспортных ГТД за последние 10—15 лет выросла на 300° С и достигает 1300° С и более, что вызвано требованиями снижения удельного веса двигателей и повышения их мощности и экономичности. Эти требования в наибольшей степени относятся к авиационным двигателям, в особенности из-за общей тенденции экономии топлива. По данным работы [7], в которой приведен обзор направлений развития зарубежных ГТД, рост температуры газа перед турбиной будет продолжаться, к 1985—1990 гг. может быть достигнут уровень 1700° С. Охлаждаемые конструкции лопаток допускают эту возможность, если учесть, что жаропрочность обычных литых материалов увеличивается в среднем на 10° в год кроме того, разрабатываются новые высокожапропрочные сплавы — композиционные, эвтектические и др. [9]. Следовательно, теплонапря-женность деталей авиационных двигателей будет увеличиваться. Высокий уровень температур объясняет и следующую особенность этих конструкций — применение высокожаропрочных сплавов, которые часто не имеют большого ресурса пластичности, свойственного ряду конструкционных материалов, используемых в тех же деталях 10—15 лет назад. В табл. 4.1 приведены для сравнения некоторые характеристики жаропрочных лопаточных сплавов, расположенных в хронологическом порядке их применения в промышленности. Каждый из четырех приведенных материалов является базовым для ряда других, созданных на его основе, и представляет, таким образом, группу сплавов.  [c.77]

За период 1959—1965 гг. освоен двигатель мощностью 1500 кет (ГТУ.-15), применяемый в парогазовом цикле на Надворнянском нефтеперегонном заводе. Установка парогазового цикла с газовыми турбинами ГТУ-15 находится в промышленной эксплуатации.  [c.491]

Пылевидное топливо ( использование (в ка.мерах сгорания газовых турбин F 23 R 5/00 для ракетных двигательных установок F 02 К 9/70 устройства для сжигания F 23 (В 1/(28, 38), С 1/(06, 10, 12), D 1/00-1/06)) Пылемеры G 01 N 15/00 Пылеотделители В 01 D 46/(02-59) Пылеотсасывающие устройства на шлифовальных станках В 24 В 55/06 Пылесосы, встроенные в транспортные средства В 60 S 1/64 Пыль [защита от пыли подшипников электрическими и магнитными методами F 16 С 33/82 изготовление пыленепроницаемых покрытий В 21 D 53/80 осаждение при формовании изделий из глины и т. п. В 28 В 17/04 отделение при приготовлении формовочных смесей В 22 С 5/10 предотвращение (появления (или опрокидывании бочек при погрузочно-разгрузочных работах) В 65 G 69/18 распространения В 08 В 15/(00-04)) средства удаления пыли из воздухоочистите.тей ДВС F 02 М 35/08 удаление <из насосов и компрессоров необъемного вытеснения F 04 D 29/79 при обработке (древесины В 27 G 3/00 камня В 28 D 7/02 формовочных смесей В 22 С 5/10) при получении чугуна С 21 В 7/22 в промышленных печах F 27 В 1/18, 15/12 при работе инструментов ударного действия В 25 D 17/(14-18) из тары и упаковок В 65 В 55/24)] Пьезоэлектрические устройства (зажигания в ДВС F 02 Р 3/12 использование для измерения силы С 01 L 1/16)  [c.156]

Основные проектные показатели работы опытно-промышленной установки приведены в табл. 36. Внутренние размеры реактора опытно-промышленной установки d = 0,35 м, I = 2,5 м. Возможна несколько более сложная, но и более экономичная схема получения рабочих агентов высокого давления, отличающаяся от рассмотренной наличием газовой турбины, приводящей в движение генератор. В зависимости от расхода и параметров рабочего дгента автономная энерготехнологическая установка позволяет получать мощность, достаточную не только для обеспечения энергетической потребности самой установки, но и для подачи в местную энергосистему, что особенно важно при разработке нефтяных месторождений в районах, отдаленных от населенных центров и линий электропередачи.  [c.303]

Для систематического накопления опыта по постройке энергетических газовых турбин, а также для проверки основных свойств паро-газового цикла была построена на заводах имени В. И. Ленина экспериментальная установка мощностью 4400 кет. Топливом служит колошниковый газ. Это позволяет получить данные, необходимые при конструировании газовых турбин для металлургической промышленности. Принципиальная схема установки показана на рис. 5-9.  [c.160]

Разработанные в Советском Союзе беско-бальтовые сплавы обеспечивают надежную работу лопаточного аппарата турбин при температуре металла, не превышающей 800° С. Дальнейшее повышение температуры, имеющее место в газовых турбинах, предназначенных в первую очередь для перекачивающих станций магистральных газопроводов, делает неизбежным переход к сплавам на никелькобальтовой основе. Опыт создания и эксплуатации таких материалов накоплен в авиационной промышленности и именно к нему необходимо было обратиться для того, чтобы проанализировать особенности отечественных никелькобальтовых сплавов и выбрать наиболее надежные для длительной эксплуатации. Исследования, проведенные в ЦКТИ, показали, что для этих целей при температуре металла до 850° С включительно являются перспективными сплавы ЭИ867 и ЭИ929, химический состав которых приведен ниже (табл. V. 21).  [c.204]

В промышленности газовые турбины нашли применение в качестве стационарной силовой установки, в первую очередь на нефтеперерабатывающих заводах и в доменном производстве, в последнем случае — в качестве привода для воздуходувок, подающ,их сжатый горячий воздух в доменные печи.  [c.345]

Горячая коррозия, как особый вид деградации металлических материалов, приобрела важное значение за последние 50 лет [1]. Необходимым условием ее протекания является образование на поверхности материала осажденного слоя соли или шлака, что приводит к изменению характера взаимодействия данного сплава с окружающей средой. Горячая коррозия, т.е. коррозия, модифицированная присутствием на поверхности сплавов слоя осадка, происходит в котлах, мусоросжигающих печах, дизельных двигателях, глушителях двигателей внутреннего сгорания и газовых турбинах. Уровень коррозионного разъедания материалов, работающих в таких условиях, в значительной степени зависит от вида и чистоты используемого топлива, а также качества подаваемого в зону горения воздуха. Так, например, горячая коррозия гораздо чаще встречается в промышленных и морских газовых турбинах, чем в авиационных. Природа горячей коррозии такова, что вызываемое ею разъедание почти всегда приводит к гораздо более сильной деградации сплавов, чем "обычная" коррозия в такой же газовой среде, но без поверхностного модифицирующего слоя осадка. Даже в тех случаях, когда свойства сплава при осаждении на его поверхности соли изменяются незначительно и связанное с присутствием осадка усиление коррозионного разъедания в начальный период времени невелико, скорость разъедания материала в конце концов все равно со временем возрастает на порядок и более за счет модификации самого механизма деградации материала. Важной особенностью процесса горячей коррозии является то, что очень часто этот модифицирующий слой представляет собой жидкость.  [c.49]


Другие процессы выплавки, электронно-лучевой переплав на холодном поду, плазменный переплав, вакуумно-дуговой двухэлектродный переплав, будут непрерывно исследовать, чтобы определить, займут ли они свое место при выплавке суперсплавов, и если займут, то каким будет это место. Каждый из этих процессов вносит какое-нибудь улучшение в качество слитка. Однако в промышленном производстве "новые" процессы приемлемы лишь тогда, когда обнаруживают экономическое превосходство над "старыми" процессами. Как вариант они должны быть технологически эффективнее "старых", т.е. в конечном счете улучшать работоспособность и/или торговую рентабельность газовых турбин или другого оборудования, при производстве которого они были использованы.  [c.161]

За прошедшие годы было предложено много определений термина суперсплавы. По нашему мнению, это сплавы, имеющие в основе элементы VIII группы, разработанные для эксплуатации при повышенных температурах и проявляющие в совокупности достаточную механическую прочность и устойчивость поверхности. Прогресс в развитии суперсплавов сделал возможным создание современных реактивных двигателей со все более высоким отношением развиваемой тяги к собственной массе двигателя. Суперсплавы играют жизненно важную роль в промышленных газовых турбинах, углеперерабатывающих и других установках, в которых действуют высокие температуры и сильно агрессивные среды.  [c.14]

Рассматривается также вопрос об установке на действующих и сооружаемых котельных, работающих на природном газе, предвключенных газовых турбин, что существенно повысит эффективность использования природного газа. В первую очередь требуется установка предвключенных газовых турбин в промышленных котельных, так как число часов использования их мощности, как правило, существенно больше по сравнению с отопительными городскими котельными.  [c.31]

Газовая турбина, сочетающая в себе преимущества двигателя внутреннего сгорания и паровой турбины, прошла за последние 10-15 лет своего развития большой путь. Простота ее конструкции, малый вес, небольшие габариты и возможность работы на низкосортном топливе являются достаточной характеристикой ее преимуществ перед другими тепловыми двигателями. Газовая турбина во многих случаях заменила поршневой двигатель внутреннего сгорания в авиации. Она, при определенных условиях, успешно конкурирует с паросиловыми установками. Газотурбоустановки применяются также в различных отраслях промышленности (металлургической, химической, нефтяной, энергетической и др.).  [c.157]

Использование тепла О. г. представляет известные трудности вследст-Бие низких темп-р их и малых Г-ных напоров (перепадов). О. г. промышленных печей и силовых установок ( выхлопные газы ) часто имеют темп-ру 400—650°, что позволяет утилизировать часть заключающегося в них тепла для подогрева воды, воздуха, а при благоприятных условиях и для получения пара, идущего для технологич. нужд, для отопительных и силовых установок. Однако соответственные устройства (паровые котлы, рекуператоры, аккумуляторы, подогреватели и т. д.) должны иметь специальную конструкцию (сильно развитые нагревательные поверхности, тонкие стены, высокие скорости дымовых газов и т. д.) для того, чтобы можно было обеспечить достаточно интенсивный переход тепла при низких Г и малых Г-ных напорах. Практически удается таким путем понижать О. г. до 100— 150°, однако подобные установки по сравнению с нормальными получаются более громоздкими, дорогими и работающими с низким кпд (45 — 55%). Кроме того указанное понижение i° О. г. лишает возможности пользоваться естественной тягой дымовых труб и вызывает необходимость установки искусственных дымососов, на приведение в движение которых расходуется от 10 до 30% всей получаемой энергии пара. Тем не менее во многих случаях практики такие установки дают значительную экономию. Так, при больших газовых двигателях (газо-динамо и газо-воздуходувках) утилизация тепла выхлопных газов в паровых котлах специальной конструкции дает возможность получить от 10 до 15% добавочной мощности при" утилизации этого пара в паровых турбинах. Установка паровых котлов при больших мартеновских печах (100 m и больше), работающих с интенсивной тепловой нагрузкой или имеющих плохую утилизацию тепла в регенеративных камерах (малый объем насадок, большие просветы между кирпичами и т. д.), дает от 300 до 650 %г пара (давлением от 6 до 12 aim) на 1 m выплавленных стальных слитков. Установка тонкостенных рекуператоров и аккумуляторов дает возможность для целого ряда мелких промышленных печей применить принцип рекуперации или воспользоваться теплым воздухом для устройства рациональной вентиляции в промышленных помещениях.  [c.241]

Агрегаты Велокс используют пока только для работы на безвольных (жидких и газообразных) топливах. Этим существенно ограничивается и применение данных агрегатов в промышленности. Работа над котельными агрегатами типа Велокс дала очень многое для развития, исследования, конструктивной разработки и усовершенствования газовых турбин.  [c.225]

Органическое топливо (газообразное, жидкое и твердое) широко иопользуется в разного рода тепловых установках в топках паровых котлов паротурбинных электростанций, в промышленных печах, в камерах сгорания газовых турбин и воздушно-реактивных двигателей, в цилиндрах поршневых двигателей внутденнего сгорания, в камерах сгорания магнитогазодинамических электрогенераторов и т. д.  [c.262]

Реакции, протекающие в таких устройствах, едины по своей природе с реакциями горения, и в результате получают горючие газообразные продукты газификации. Встречаются в теплотехнике случаи двух-стадийного сжигания топлива сначала топливо газифицируется, а затем (в том же устройстве) продукты газификации полностью дожигаются. Условия сгорания топлива в разных теплотехнических устройствах различны, как различны сами топлива и подготовка их к сжиганию. Например, в топках паровых котлов и в промышленных печах топливо сгорает при атмосферном давлении, в то время как в камерах сгорания газовых турбин и в цилиндрах двигателей внутреннего сгорания топливо гсфит при давлении, во много раз превышающем атмосферное. Несмотря на указанное выше различие, в процессах сгорания много общего. Общие главные вопросы вкратце излагаются ниже.  [c.262]

Газотурбинные установки могут сочетаться с паровыми электрическими станциями. Принципиальная схема одного из предложенных парогазовых циклов изображена на рис. 33-8. В этой схеме применен паровой котел высокого давления 5, под которым сжигается топливо (горючий газ или мазут) давлением 2—3 ата. В компрессоре 3 сжимается горючий газ, в компрессоре 2 — воздух. Продукты сгорания охлаждаются в котле 5 до 650—700° С (за счет образования водяного пара) и направляются в газовую турбину /, после чего они поступают в подогреватель питательной воды (водяной экономайзер), где охлаждаются примерно до 160° с. После подогревателя 6 продукты сгорания уходят в дымовую трубу. Высоконапорный (по давлению продуктов сгорания топлива) котел 5 выполняется с применением больших скоростей газов (200— 300 м1сек), поэтому коэффициент теплопередачи получается большим, а котел компактным. Водяной пар направляется в паровую турбину 7 и далее в конденсатор 9. Конденсат при помощи конденсатного насоса 10 через подогреватель низкого давления регенеративного цикла 11 направляется в деаэратор 12, из которого питательным насосом 13 через регенеративный подогреватель высокого давления 14 поступает в водяной экономайзер 6. Применение паро-газового цикла может повысить к. п. д. установки на 3—7% по сравнению с исходным паровым циклом. Такие установки используют в промышленности и на транспорте.  [c.510]

Паровые турбины используются во всех областях промышленного П1роизводства, но преимущественное применение они находят на крупных тепловых электрических станциях. Газовые турбины используются в настоящее время главным образом в авиации, где они составляют основную часть реактивных двигателей, а также для транопорта природного  [c.61]

Изложены o iioBEii технической термодинамики и теории тепло-и массообмена. Приведены основные сведения по процессам горения, конструкциям топок и котельных агрегатов. Рассмотрены принципы работы тепловых двигателей, паровых и газовых турбин, двигателей внутреннего сгорания и компрессоров. Описаны компоновки и технологическое оборудование тепловых электрических станций, а также оборудование промышленных теплоэнергетических установок. Первое издание вышло в 1982 г. Второе издание дополнено материалами для самостоятельной работы студентов.  [c.2]


Смотреть страницы где упоминается термин Турбины газовые в промышленност : [c.320]    [c.538]    [c.16]    [c.795]    [c.14]    [c.30]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.440 ]



ПОИСК



Газовая промышленность

Турбина газовая

Турбины Газовые турбины

Турбины газовые



© 2025 Mash-xxl.info Реклама на сайте