Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс излучения света по квантовой теори

Солнечное излучение (СИ) — это процесс переноса энергии при распределении электромагнитных волн в прозрачной среде. По квантовой теории электромагнитные волны — это поток элементарных частиц и фотонов с нулевой массой покоя, движущихся в вакууме со скоростью света. В космосе через 1 в 1 с проходит 3 10 фотонов, энергия которых зависит от длины волны (мкм).  [c.145]

Наряду с теми трудностями, к которым приводила электронная теория Лорентца, опиравшаяся на представление о неподвижном эфире, выяснились и другие затруднения этой теории. Она оставляла неразъясненными многие особенности явлений, касающихся взаимодействия света и вещества. В частности, не получил удовлетворительного разрешения вопрос о распределении энергии по длинам волн в излучении накаленного черного тела. Накопившиеся затруднения вынудили Планка сформулировать теорию квантов (1900 г.), которая переносит идею прерывности (дискретности), заимствованную из учения о молекулярном строении вещества, на электромагнитные процессы, в том числе и на процесс испускания света. Теория квантов устранила затруднения в вопросах излучения света нагретыми телами она по-новому поставила всю проблему взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света. Процесс развития теории квантов, ставшей основой современного учения о строении атомов и молекул, продолжается и ныне.  [c.24]


Основной опытный факт — увеличение доли рассеянного света на несколько порядков величины — получает объяснение, если принять во внимание общее положение квантовой теории излучения о существовании стимулированного аналога у любого радиационного процесса ). Комбинационное рассеяние, наблюдаемое при малых интенсивностях возбуждения, представляет собой спонтанное испускание фотона ( = — ) при исчезновении фотона Й возбуждающего света. Поток спонтанного комбинационного рассеяния, отнесенный к единице объема и суммированный по всем направлениям, пропорционален освещенности / вещества.  [c.854]

Как известно, тепловое движение атомов твёрдого тела рассматривают как совокупность нормальных малых колебаний кристаллической решётки. В квантовой теории вместо этих колебаний вводится понятие о фононах как о некоторых распространяющихся по решетке квазичастицах, обладающих определенными энергиями и направлениями движения. Если частота возбуждающего света попадает в область прозрачности кристалла, то в результате взаимодействия света с веществом происходит рассеяние с той же частотой или с изменённой частотой. Процессы рассеяния света в теории рассматриваются как процессы второго порядка, проходящие через промежуточные виртуальные состояния. При релеевском рассеянии процессы поглощения и излучения когерентно связаны такое рассеяние является упругим соударением фотона с атомами кристалла. При комбинационном рассеянии происходит неупругое столкновение фотона с фононами. Из-за изменения частоты когерентность нарушается, однако сохраняются кинематические соотношения, обусловленные выполнением законов сохранения энергии и импульса.  [c.14]

Следующие параграфы посвящены развитию квантовой теории колебаний решетки, а также инфракрасного поглощения и комбинационного рассеяния света на фононах. Роль симметрии в подобных задачах хорошо известна. Если структура пространственной группы кристалла, ее представления и коэффициенты приведения известны, то остальное состоит в применении и конкретизации этих результатов в духе методов, используемых в аналогичных проблемах атомной, молекулярной и ядерной физики. Но чтобы представлять себе, как и где применять и конкретизировать методы теории групп, необходимо знать квантовую теорию соответствующих процессов. Здесь возможны различные уровни сложности, но мы использовали в основном гармоническое приближение квантовой теории колебаний решетки, чтобы показать, каким образом можно получить симметрию многофононных состояний в гармоническом приближении. Однако не представляет труда провести обобщение с учетом разрешенных по симметрии ангармонических процессов, если воспользоваться методами, известными из классической теории тензорного анализа. Теория инфракрасного поглощения и комбинационного рассеяния излагается в рамках полуклассической теории излучения, а также с разной степенью глубины и в более современных микроскопических подходах. Во всех случаях эффекты, связанные с симметрией, выделяются в явном виде. Это вновь иллюстрирует нашу стратегию изложения динамической теории в тесном един-  [c.257]


Но вывод закона излучения по методу Планка, приведенный в 9.2, в какой-то мере неудовлетворителен, поскольку он во многом основан на законах классической физики и лишь частично использует квантовые представления. В самом деле, формула (9.14), связывающая спектральную плотность энергии равновесного излучения ИЛ Г) со средней энергией <е) осциллятора, получена чисто классическим путем, так как поглощение и испускание света осциллятором рассчитывалось с помощью классической электродинамики, в то время как при нахождении <е> использована квантовая гипотеза о дискретных энергетических уровнях осциллятора. Успех такой эклектической теории связан со спецификой выбранной модели для осциллятора, как это уже отмечалось при обсуждении классической теории дисперсии (см. 2.3), классическое и квантовомеханическое рассмотрение процессов поглощения и испускания приводит к одинаковым результатам.  [c.435]

Из трех томов Света Г. Хакена за рубежом пока что изданы первые два. В первом томе, озаглавленном Волны, фотоны, атомы [4], автор, начиная с самых элементарных понятий и положений, излагает физические основы и математический аппарат квантовой теории с акцентом на световые явления при этом, по мнению Г. Хакена, от читателя не требуется даже предварительного знакомства с квантовой механикой и предполагается лишь владение стандартным математическим аппаратом. Точно так же для чтения второго тома не нужна обязательная проработка первого тома обращаться к его тексту было бы полезно лишь при чтении некоторых специальных разделов Лазерной светодинамики , однако советский читатель легко найдет все необходимые пояснения и в других доступных ему учебных пособиях, руководствах и монографиях (см., например, [5—17]). В запланированном третьем томе Г. Хакен намерен дать детальный теоретический анализ нелинейных процессов взаимодействия мощного когерентного излучения с веществом.  [c.5]

Относящиеся к квантовой оптике вопросы (фотонные представления явления, в которых проявляются корпускулярные свойства излучения) освещаются в той или иной степенью полноты во всех современных учебных пособиях по физике. В вузовских курсах физики рассматриваются закономерности теплового излучения (от закона Кирхгофа до формулы Планка), сообщаются сведения о фотоэффекте, эффекте Комптона, фотохимическом действии света, дается объяснение испускания и поглощения света атомами на основе теории Бора. При более глубоком изучении физики студентов знакомят также с люминесцентными явлениями, эффектом Л1ёссбауэра, многофотонными процессами, дают им некоторые сведения о квазичастицах в твердых телах. При этом авторы одних учебников пользуются термином квантовая оптика , тогда как в других учебниках этот термин не применяется, а соответствующие вопросы собраны в главах, называемых Тепловое излучение , Световые кванты , Действие света и т. п. Дело в том, что в использовании термина квантовая оптика нет четкой договоренности. Согласно точке зрения, принятой в современной научной литературе, все отмечавшиеся выше вопросы — это еще не сама квантовая  [c.4]

Все это за последние 25 лет привело к значительному развитию оптики, существенно расширились ее приложения. Начало этому процессу было положено важными работами, приведшими к созданию квантовых генераторов излучения. Наряду с фундаментальными работами по мазерам и лазерам советскими физиками внесен большой вклад в развитие многих важных разделов оптики. Напримбр, таких, как рассеяние света, голография, оптические системы, нелинейная оптика и т. д. В этом развит оптики фундаментальные основы ее, естественно, не претерпели существенных изменений. В ряде случаев они были прояснены, а в других случаях — обогащены проникновением понятий, методов, математических приемов и т. д. из других областей науки (например, теории случайных процессов, физики линейных и нелинейных колебаний, матричньк методов расчета и т. д.).  [c.9]

Квантовая электроника достигла больших успехов в создании лазерных источников света с высокой напряженностью поля, хорошими когерентными свойствами, перестраиваемой частотой и регулируемым распределением излучения во времени. Созданы также регистрирующие устройства высокого временного и спектрального разрешения. С помощью этой новой совершенной аппаратуры в последние годы удалось провести многочисленные и качественно новые эксперименты по взаимодействию межДу электромагнитными полями н атомными системами. Одновременно продолжалось теоретическое изучение таких взаимодействий и была создана теория процессов, происходящих в сильных когерентных полях, причем в зависимости от характера конкретных процессов на передний план в большей или меньшей степени выдвигались квантовые свойства атомных систем нли поля излучения. В некоторых случаях учитывались сразу квантовые свойства как атомных систем, так и поля излучения. Эти экспериментальные и теоретические исследования в нелинейной оптике позволили получить принципиально новую информацию о процессах взаимодействия между светом и атомными системами в различных состояниях, а также о физических и химических свойствах веществ и о параметрах процессов, влияющих на ход нелинейных оптических явлений. Открылись новые горизонты в спектроскопии, фотофизике, фотохимии и квантовой электронике, а также в области их технических применений.  [c.8]



Смотреть страницы где упоминается термин Процесс излучения света по квантовой теори : [c.730]    [c.285]    [c.369]    [c.432]    [c.249]    [c.441]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.334 ]



ПОИСК



Теория излучения

Теория процесса

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте