Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронограф

Дифракционную картину, получаемую при рассеянии излучения от кристалла, в случае рентгенографии и электронографии фиксируют на фотопленке или фотопластине, а в случае нейтронографии— счетчиком Гейгера.  [c.35]

Прежде чем перейти к изложению сущности, укажем на различие трех выше указанных дифракционных методов. Оно обусловлено различной силой взаимодействия рентгеновского, электронного и нейтронного излучений с веществом. Рентгеновское электромагнитное излучение при прохождении через кристалл взаимодействует с электронными оболочками атомов (возникающие вынужденные колебания ядер вследствие их большой массы имеют пренебрежимо малую амплитуду), и дифракционная картина связана с распределением электронной плотности, которую можно характеризовать некоторой функцией координат р(л. у, z). В электронографии используют электроны таких энергий, что они взаимодействуют, главным образом, не с электронными оболочками атомов, а с электростатическими потенциальными полями ф(х, у, Z), создаваемыми ядрами исследуемого вещества. Взаимодействие между двумя заряженными частицами (электроном и ядром атома) значительно сильнее, чем между электромагнитным излучением и электронной оболочкой атома. Поэтому интенсивность дифракции электронного излучения примерно в 10 раз сильнее, чем рентгеновского. Отсюда понятно, почему получение рентгенограмм часто требует нескольких часов, электронограмм — нескольких секунд.  [c.36]


Выше мы говорили о том, что все дифракционные методы основаны на общих Принципах дифракции волн или частиц, поэтому с помощью любого метода можно определить атомную структуру. Такой геометрический характер задачи позволяет в большинстве случаев перенести без изменения в электронографию и нейтронографию геометрическую теорию дифракции, развитую первоначально применительно к рентгеновским лучам.  [c.37]

Гипотеза де Бройля подвергалась тщательной многократной проверке и получила столь убедительное экспериментальное подтверждение, что в настоящее время не вызывает сомнений. На волновых свойствах микрочастиц основываются электронная микроскопия, электронография, нейтронография и т, д.  [c.96]

Измерение электросопротивления. Электросопротивление исследуемого тела чувствительно как к нарушениям его сплошности, так и к степени пластической деформации, однако в силу ряда особенностей, этот метод при трении используется значительно меньше, чем другие физические методы исследования (электронография, электронная микроскопия, рентгеноструктурный анализ).  [c.43]

Большой интерес поэтому представляют методы, не требующие снятия слоев. Данные о структуре металла на разной глубине можно получить путем изменения проникающей способности рентгеновских лучей разной длины волны и изменения угла падения лучей на исследуемую поверхность. В [43] был разработан метод исследования структуры твердых тел, получивший название метода скользящего пучка рентгеновских лучей, который позволяет исследовать предельно тонкие слои металла (толщиной 10" — 10" см), занимающие промежуточное положение в случае применения стандартных рентгеновских методик и обычных электронных пучков в методе электронографии. Таким образом, представляется возможность исследовать структурные изменения по глубине металла без какой-либо дополнительной обработки поверхности, неизбежно искажающей результаты исследования, и получить сведения о структуре и свойствах приповерхностных слоев металла, которые до сих пор фактически отсутствуют.  [c.18]

Проекционная электронография 0,2 1 Точность совмещения рисунка на фотокатоде и пластинке  [c.457]

Для изучения коррозионного поведения металлов и сплавов во влажных газах и жидких электролитах широко используются разнообразные электрохимические методы исследования, число которых растет по мере внедрения в измерительную технику электронной аппаратуры. Электрохимические методы исследования в сочетании с методами электронографии и рентгенографии позволяют выявить тончайшую структуру поверхностных пленок на металлах, позволяют проследить различные фазы развития питтинга и микротрещины.  [c.128]

Одним из методов определения параметров решетки наночастиц является электронная дифракция. Анализ систематических ошибок этого метода показал, что для точного определения периода решетки наночастиц пригодны лишь некоторые дифракционные линии например, для кубических нанокристаллов рекомендуется использовать линию (220) [242]. Учет уширения этого дифракционного отражения показал, что в частицах Ag диаметром 3,1 нм и частицах Pt диаметром 3,8 нм параметр решетки сокращается на 0,7 и 0,5 % соответственно по сравнению с массивными серебром и платиной [242]. В [194, 243, 244] методом электронографии с использованием картин муара показано, что изменение диаметра частиц AI от 20 до 6 нм приводит к снижению периода решетки на 1,5 % (рис. 3.6), хотя ранее [245] для частиц AI диаметром >3 нм этого не отмечено. Уменьшение периода решетки от 0,405 нм для массивного образца AI до 0,402 нм для наночастицы А1 диаметром 40 нм обнаружено методом нейтронографии [8].  [c.73]


Электронография при исследовании окалины занимает особое место Сущность метода заключается в использовании явления дифракции электронов, возникающего в результате когерентного рассеяния кристаллической решетки вещества пучка электронов с длиной волны X < < Id (где d - наименьшее изучаемое межплоскостное расстояние) Метод дает возможность получать такие же данные о кристаллической структуре веществ, как и рентгеновский метод. При этом для расчета электронограмм используется известное в рентгенографии уравнение Вульфа — Брэгга  [c.22]

Рис. 23. Электронография изломов. Х5000 а, 6 — вязкий (чашечный) излом в, г — хрупкпй (речной) излому а, в — снято в электронном микроскопе а, г — снято на растровом микроскопе Рис. 23. Электронография изломов. Х5000 а, 6 — вязкий (чашечный) излом в, г — хрупкпй (речной) излому а, в — снято в электронном микроскопе а, г — снято на растровом микроскопе
Для определения атомной структуры твердых тел используют дифракционные методы. Классификация этих методов дается по виду используемого излучения. Различают методы рентгенографии, электронографии и нейтронографии. Все эти методы основаны на общих принципах дифракции волн или частиц при прохождении через кристаллическое вещество, являющееся для них своеобраз-34  [c.34]

Для получения дифракционной картины существенно, чтобы длина волны используемого излучения была сравнима с этим средним межатомным расстоянием. В рентгенографии для исследования атомной структуры применяют рентгеновские лучи с длинами волн 01 0,7-10- ° до 3-10- ° м, в электронографии электроны с длинами волн де Бройля —от 3-10 до м, в нейтроно-  [c.35]

С целью идентификации зон было проведено электронно-микроскопическое изучение морфологии поверхности покрытия (рис. 2, а), исходной пластины высококобальтового сплава 49КФ (рис. 2, б) и стороны пластины сплава, которая во время формирования покрытия оставалась незащищенной (рис. 2, в). Поверхности покрытия и исходной пластины сплава были фактически бесструктурными (на поверхности сплава заметна только слабая штриховка), в то время как на незащищенной во время формирования покрытия стороне сплава наблюдалось много образований неправильной формы величиной 0..3—0.5 мкм. Методом электронографии была проведена их идентификация это кристаллики феррита кобальта (СоЕвдО , что было подтверждено и рентгенографическим анализом. Кроме феррита кобальта, на корродированной стороне сплава присутствуют оксиды железа.  [c.87]

ЭКВИВАЛЕНТ (биологический рентгена (БЭР) — поглощенная энергия излучения, биологически эквивалентная одному рентгену механический — количество работы, эквивалентное единице количества теплоты химический — отношение атомного веса элемента к его валентности электрохимический численно равен массе вещества, выделяющегося при прохождении через электролит единичного электрического заряда, и зависит от природы химической вещества) ЭЛЕКТРОАКУСТИКА— раздел акустики, связанный с расчетом и конструированием электроакустических преобразователей ЭЛЕ-КТРОГИРАЦИЯ — возникновение или изменение оптической активности в кристаллах под действием электрического поля ЭЛЕКТРОДИФФУЗИЯ — диффузия заряженных частиц под действием внешнего электрического поля ЭЛЕКТРОНОГРАФИЯ— метод исследования структуры вещества, основанный на дифракции электронов ЭЛЕКТРООПТИКА — раздел оптики, посвященный изучению условий и закономерностей  [c.297]

ДибМ. К. Прецезионный манипулятор для перемещения образца и цилиндра Фарадея в низковольтном электронографе // Приборы для научных исследований. — 1976. — № 1. — Р. 43—48,  [c.270]

Для простых молекул В. у,, как и др. геом. параметры молекулы, можно рассчитать метода.чи квантовой химии. Экспериментально их определяют из значений моментов инерции молекул, полученных путём анализа их вращат. спектров (с.ч. Инфракрасная спектроскопия, Молекулярные спектры. Микроволновая спектроскопия). В. у, сложных молекул определяют методами дифракционного структурного анализа (см. Рентгеновский структурный анализ, Нейтронография, Электронография). в. Г. Дашевский,  [c.239]

Атомная структура ядер дислокаций, точечных н поверхностных Д. наблюдается с помощью автоиоилого микроскопа (см. Иияный проектор), методами электронной микроскопии и др. Дифракционные методы (электронография рентгеновский структурный анализ, иейт-роиография структурная) используются для определения атомных конфигураций ядер и упругих полей Д. Ряд деталей установлен моделированием на ЭВМ.  [c.597]

При Д. а. и м. взаимодействуют внеш. электронные оболочки частиц пучка и мшиени. Т. к. при объединении атомов в молекулы и кристаллы внеш. оболочки испытывают наиб, деформации, Д. а. и м. пользуются при изучении этих деформаций. В то же время при оп-ределеиии структурных амплитуд в др. типах структурного анализа (см. Рентгеновский структурный анализ, Нейтронография, Электронография) используют атомные факторы, рассчитываемые математически или получаемые экспериментально, к-рые при рассмотрении явлений Д. а. и м. применить нельзя, т. к. они в этом случае оказываются разными для разд. хим. соединений. Интерпретация дифракц. исследований часто проводится с помощью модели жёсткой гофриров. поверхности, характеризуемой амплитудой гофра А.  [c.663]


Структуру жидкостей изучают с помоп(ью методов рентгваовского структурного анализа, электронографии. и нейтронографии. Уксиерим. исследования показали, что Ж. обладают определённой структурой. Ближайшие соседи каждой молекулы Ж. в среднем располагаются в к.-л. порядке, так что число ближайших соседей и их взаимное расположение в среднем для всех молекул одинаково, это означает, что в Ж. существует блншний порядок.  [c.38]

В структурных исследованиях вещества используют, как правило, рентг. излучение или тепловые нейтроны с длиной волны 1 —10A (10" —1 нм). С их помощью изучают неоднородности коллоидных размеров 10—Ю А). В отличив от др. дифракц. методов [рентгеновского структурного анализа, нейтронографии, электронографии), с помощью М. р. исследуют структуру разупорядоченных объектов. Иногда М.р.— единств, метод получения прямой структурной информация о системах с хаотическим расположением неоднородностей коллоидных размеров наличие М. р. уже является доказательством присутствия в среде таких неоднородностей. Неоднородности же, имеющие размеры порядка межатомных расстояний, на малоугловой части дифракц. картины не сказываются.  [c.41]

От.чичия Н. от методов, использующих рассеяние др. частиц [электронографии, рентгеновского структурного анализа, рассеяния света), связаны со свойствами нейтрона отсутствием электрич. заряда, наличием  [c.284]

О. р.— важный матем. образ, находящий многочисл. применения в кристаллографии и физике твёрдого тела, Напр., понятие О. р. удобно использовать при описании дифракции частиц на кристаллич. решётке (см. Дифракция нейтронов. Нейтронография структурная, Рентгеновский структурный анализ. Электронография). Соответственно нейтроне- и рентгенограммы кристалла могут дать изображение О, р.  [c.384]

Характер Х,с. влияет на мн. свойства вещества, исследование к-рых позволяет получить информацию о X. с. К экс-пернм. методам изучения X. с. относятся разл. виды спектроскопии (см., напр.. Инфракрасная спектроскопия, Молекулярные спектры, Спектры кристаллов и др.), дифракционные методы (см. Рентгеновский структурный анализ. Электронография, Нейтронография), магнетохи-мия, химическая кинетика, резонансные методы (ЭПР, ЯМР) и др.  [c.408]

Состав объектов исследуется методами микродифракции, т. е. электронографии локальных участков объекта, методами рентг. и катодолюминесцентного локального спектрального микроанализа (см. Рентгеноспектральный анализ) регистрируются рентг, излучение на характеристических частотах или катодолюминесценция, возникающие при бомбардировке образца сфокусированным пучком электронов (диаметр электронного зонда менее  [c.551]

ЭЛЕКТРОНОГРАФ — прибор Д1я исследования атомного строения вещества (гл. обр. твёрдых тел и газовых молекул) методами электронографии. Э.— вакуумный прибор, схема той его части, где формируется электронный пучок, близка к схеме электронного микроскопа. В колонке—основном узле Э. (рис. 1, 2 в ст. Электронный микроскоп) — электроны, испускаемые раскалённой вольфрамовой нитью, разгоняются высоким напряжением (от 30 кВ и выше— быстрые электроны и до 1 кВ — медленные электроны), С помощью диафрагм и магн. линз формируется узкий электронный пучок, направляемый на исследуемый образец, находящийся в спец. камере объектов и установленный на спея, столике. Для регистрации электронов используют, напр., люминесцентный экран или фотопластинку, чувствительную к потоку электронов, на к-рой создаётся лифракц. изображение (электронограмма). Э. снабжают разл. устройствами для нагревания, охлаждения, испарения образца, его деформации и т, д.  [c.584]

ЭР-100 4 ступени 25, 50, 75 и 100 кВ). Разрешающая способность Э. достигает Ю —10 нм и зависит от энергии электронов, сечения электронного пучка и расстояния от образца до экрана, к-рое в совр. Э. может изменяться в пределах 200—600 мм, Управление совр. Э., как правило, автоматизировано. Р. М. Имамов. ЭЛЕКТРОНОГРАФИЯ—метод изучения структуры вещества. основанный на исследовании рассеяния образцом ускоренных электронов. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул газов и паров. Физ. основа Э.— дифракция электронов при прохождении через вещество электроны, обладающие волновыми свойствами (см. Корпускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются дифрагированные пучки, интенсивность и расположение к-рых связаны с атомной структурой образца и др. структурными параметрами. Рассеяние электронов определяется эл.-статич. потенциалом атомов, максимумы к-рого отвечают положениям атомных ядер.  [c.584]

В электронографах и электронных микроскопах формируется узкий светосильный пучок ускоренных электронов. Он направляется на объект и рассеивается им, дифракц. картина (электронограмма) либо фотографируется, либо регистрируется электронным устройством. Осн. вариантами метода являются дифракция быстрых электронов (ускоряющее напряжение от 30—50 кВ и более) и дифракция. медленных электронов (от неск, В до немногих сотен В).  [c.584]

Лит. Пи иске р 3. Г Дифракция электронов, М.— Л., 1949 Вайнштейн Б. К., Структурная электронография. М., 1956 Звягин Б. Б., Электронография и структурная кристаллография глинистых минералов. М., 1964 Современная кристаллография, т. 1, М., 1979, с. 327. 3. Г. Пиискер.  [c.585]

Особенность электронографического метода состоит в том, что электронный пучок рассеивается веществом приблизительно в I f раз сильнее, чем рентгеновские лучи, и проникновение электронов в вещество невелико в сравнении с рентгеновскими лучами. Максимальная толщина окисных пленок, поддающихся злектронографированию, при съемке на просвет, составляет около 100 нм. При съемке методом отражения (применяя касательный к поверхности пучок электронов) можно анализировать окисные пленки толщиной порядка 1 нм и даже обнаруживать наличие мономолекулярного окисного слоя, т.е. фиксировать переход от хемисорбции к окислению. Электронография позволяет изучать процесс зародышеобразования, а при электронномикроскопическом исследовании фольговых образцов — кристаллическую структуру неметаллических включений (микродифракция). Таким образом, чувствительность метода весьма высока, и основное достоинство его заключается в возможности исследования малых объемов вещества.  [c.22]

Чтобы завершить рассмотрение особенностей метода, отметим его основные недостатки. Они обусловлены тем, что значения длин волн электронов, получаемые в современных электронографах с ускоряющим напряжением в несколько десятков киловольт, составляют сотые доли ангстрема, что меньше длин волн, применяемых рентгеновских лучей. Поэтому углы дифракции, определяемые по уравнению Вульфа - Брэгга, очень малы. Например, для межплоскостного расстояния 0,1 нм при длине волны 0,005 нм (ускоряющее напряжение порядка 50 кВ) угол дифракции составляет всего около 1,5 град. Вследствие этого разрешающая способность по этому методу ниже и меньше точность определения меж-плоскостных расстояний, чем при использовании рентгенографии.  [c.23]

Методом электронографии установлено также соединение ugSe 5, которое обладает структурой собственного типа (пр. гр.  [c.315]

Результаты исследования структуры стали 40Г11Н10Ю5Ф с помощью электронной микроскопии и электронографии показали, что структурные изменения при старении связаны с двумя стадиями. На первой стадии одновременно выделяются дисперсные карбиды V и интерметаллические частицы У (никель, алюминий), ориентационно связанные с матрицей и изоморфные к ней. Отмечено, что гомогенно выделяющиеся частицы у и V частично или полностью когерентны с аустенитной матрицей и образуют трехмерную периодическую структуру. На второй стадии старения У-частицы сменяются а-интерметаллидами на основе NiAl с ОЦК-решеткой в форме пластин-реек. При увеличении длительности старения при повышенных температурах происходит коагуляция интерметаллических частиц, а коагуляция карбидных частиц затормаживается. Влияние этих структурных изменений на свойства стали представлено на рис. 148. Можно видеть, что с ростом длительности старения растет Ов, достигается стадия насыщения (X 2ч). Как отмечено в [388], прочностные свойства отвечают длительности старения при переходе от первой стадии ко второй, когда структура стали характеризуется наличием большого количества высокодисперсных частиц V , У и а.  [c.247]



Смотреть страницы где упоминается термин Электронограф : [c.175]    [c.331]    [c.682]    [c.256]    [c.452]    [c.505]    [c.511]    [c.515]    [c.519]    [c.562]    [c.195]    [c.197]    [c.369]    [c.651]    [c.319]    [c.553]    [c.584]    [c.985]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Электронограф


Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.168 ]



ПОИСК



Некоторые формулы электронографии

Электронная микроскопия и электронография (Л. М Утевский)

Электронография

Электронография

Электронография отражение

Электронография подготовка образцов

Электронография съемка на просвет



© 2025 Mash-xxl.info Реклама на сайте