Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Феррит критическая температура хрупкост

Кремнистый феррит имеет крупнозернистое строение хорошо сопротивляется коррозии и обладает особыми электротехническими свойствами повышает твердость и предел пропорциональности сильно повышает коэффициент упрочнения практически не повышает, а при большем содержании понижает сопротивление вязкому разрушению понижает пластичность особенно заметно с 2% кремния повышает критическую температуру хрупкости, а при содержании его в количестве >1% резко падает ударная вязкость при комнатной температуре  [c.22]

Никель, растворяясь в феррите, образует прочную и вязкую фер ритную основу, вызывая упрочнение феррита, не снижая его пласти ческих свойств и несколько повышая вязкость (до содержания никеля 3,5%). Никель способствует измельчению зерна стали, умень шает чувствительность ее к перегреву, резко понижает порог хладно ломкости (критическую температуру хрупкости) и повышает сопро тивление отрыву.  [c.70]


Легирование снижает критическую температуру хрупкости структур сорбита и троостита. Отрицательное влияние на свойства низко- и среднеотпущенной стали оказывают структурно-свободный феррит и остаточный аустенит.  [c.16]

Резко отрицательное действие на хладостой-кость оказывают вредные примеси фосфор и сера. Растворяясь в феррите, фосфор заметно искажает кристаллическую решетку твердого раствора и повышает температуру перехода в твердое состояние. Охрупчивающее влияние фосфора усиливается при обогащении им межзеренных границ благодаря развитию ликвационных процессов. Обогащение фосфором границ аустенитных зерен может также явиться следствием перераспределения примесей из-за неодновременного протекания процессов превращения неравновесных структур. Обратимая отпускная хрупкость способствует не только абсолютному уменьшению уровня ударной вязкости, но и существенному повышению порога хладноломкости. Легирование молибденом снижает как склонность стали к отпускной хрупкости, так и порог хладноломкости. Повышение содержания фосфора на 0,01 % в литой стали 35Л увеличивает критическую температуру хрупкости на 20 °С.  [c.600]

Большинство легирующих элементов, растворяющихся в феррите, гювышает его прочность, особенно после закалки и высокого отпуска. Последние опубликованные данные [24, 25] по влиянию легирующих элементов на твердость феррита после медленного охлаждения приведены на фиг. 16. Сравнение свойств феррита, как показано М. М. Штейнбергом, должно производиться при одной и той же ее личине зерна, так как уменьшение зерна феррита повышает его механические свойства. Особенно резко измельчение зерна феррита действует на сопротивление отрыву 5 и критическую температуру хрупкости Т . На твердость и предел прочности влияние величины зерна феррита сказывается меньше. Однако изменение зерна нелегированного феррита с № 1 до № 8 повышает твердость на 30% (до 100 Нд). Предел прочности легирующие элементы повышают примерно на столько же, на сколько они повышают и твердость. Особенно сильно легирующие элементы увеличивают сопротивление малым пластическим деформациям (предел текучести).  [c.30]

Весьма существенное влияние на склонность легированного фер рита или низкоуглеродистой стали к хладноломкости оказывает величина действительного зерна, количество и характер распределения неметаллических включений и металлургическая природа стали. На фиг. 24 представлено влияние концентрации растворенно го в феррите легирующего элемента на критическую температуру хрупкости при двух размерах зерна феррита № 1—0 (фиг. 24, а) и № 6—5 (фиг. 24, б). Переход из вязкого состояния в хрупкое (температура Т ) в основном зависит от величины зерна феррита  [c.36]

Никель расширяет на диаграмме состояния область существования твердого раствора иа базе -[-модификации железа. При 28% N1 точка Лд понижается до температуры 20° С при Зб /р, N1 даже переохлаждение до —183° С ие приводит к полиморфному превращению твердых растворов на базе 7- н с -железа. Являясь графитообразугощим элементом, никель находится в твердом растворе в феррите, значительно упрочняя его без заметного снижения вязкости. Никель уменьшает растворимость углерода в аустените, понижает и сдвигает влево точку перлитного эвтектоидного превращения, способствует переохлаждению, аустенита. Никелевая машино-строите.тьная сталь обладает после термообработки тонкой структурой, позволяющей получить при повышенной прочности высокие свойства пластичности и вязкости. Повышая устойчивость аустенита, никель при повышении его содержания действует в том же направлении, что и увеличение скорости охлаждения это приводит к увеличе нию прокаливаемости за счет снижения критической скорости закалки и определяет применение никелевой машиностроительной стали для массивных деталей. Уменьшение склонности к росту зерна и нечувствительность к отпускной хрупкости являются преимуществами легированной стали, содержащей никель.  [c.114]



Смотреть страницы где упоминается термин Феррит критическая температура хрупкост : [c.35]    [c.90]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.563 ]



ПОИСК



Критическая температура хрупкости

Температура критическая

Температура хрупкости

Ферре

Ферриты

Хрупкость



© 2025 Mash-xxl.info Реклама на сайте