Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

C—D колебание уровней

Математические модели конструктивных элементов по аналогии с моделями ЭМП на стадии расчетного проектирования целесообразно разрабатывать в двух вариантах быстрые и медленные. Это объясняется тем, что многие элементы для проверки ограничений требуют выполнения большого объема расчетов. Например, при конструировании вала необходимо вести расчеты на прочность и деформацию, определять крутильные и изгибающие колебания, уровень шумов и вибрации, усилия, передаваемые на подшипники, и т. п. Многие из этих расчетов ведутся достаточно точно с помощью громоздких алгоритмов, использующих теоретические методы моделирования и требующих большого машиносчетного времени. Поэтому при оптимизации геометрических размеров элемента следует пользоваться упрощенными (быстрыми) моделями, а для выбранного конечного варианта провести поверочные расчеты с помощью более точных (медленных) моделей.  [c.167]


Характер влияния различных видов диссипативных сил на динамическое поведение механической системы неодинаков. Роль внутреннего неупругого сопротивления в материале, конструкционного демпфирования, вязкого сопротивления и кулонова трения ограничивается в основном рассеянием энергии при колебаниях. Влияние этих сопротивлений на характер движения системы заметно сказывается при свободных колебаниях, проявляющихся в реальных условиях при переходных режимах работы машинного агрегата. Наличие диссипативных сил приводит к затуханию свободных колебаний, возникающих в результате нарушения равновесных состояний системы при сбросе и набросе нагрузки, при запуске двигателя, при переходе с одного эксплуатационного режима на другой. Особенно важно знание диссипативных сил для оценки максимального уровня резонансных колебаний. Уровень этих колебаний определяется в основном  [c.13]

В результате изменяются характеристики на участке торможения и при подходе захвата к рабочему положению возникают значительные длительные колебания. Уровень этих колебаний уменьшается благодаря введению обратных связей и усложнению системы управления, учету собственных частот колебания руки при назначении режимов работы. При контурном управлении погрешности определяются как в плоскости (например, методом сечений с записью шариковой ручкой), так и в пространстве с использованием описанных выше линеек и датчиков. Учет погрешностей и деформаций шарнирных механизмов манипуляторов может выполняться расчетными [12] и экспериментально-расчетными методами. Такие методы разработаны в Институте механики АН СССР и Ленинградском политехническом институте. Большое значение имеет прогнозирование точностной (параметрической) надежности роботов. Здесь может быть применена методика, разработанная А. С. Прониковым и его учениками [25, 58].  [c.84]

При вводе механических колебаний в свариваемые металлы изделие начинает вибрировать с ультразвуковой частотой. Форма колебаний определяется геометрическими размерами изделия. В наиболее простом и распространенном случае — сварка листа прямоугольной формы — в последнем устанавливается стоячая волна с характерным чередованием узлов и пучностей плоской волны изгибных колебаний. Уровень напряжений, возникающих в пучностях, определяется мощностью энергии, вводимой в зону сварки. При этом возникает опасность появления микро-и макротрещин в зоне сварки. Образование трещин при достаточном уровне энергии свойственно металлам, обладающим малой пластичностью, имеющим местные дефекты, чрезмерный наклеп и т. п. Для снижения вредного эффекта вибрации свариваемого изделия применяют струбцины с резиновыми прокладками, предварительное снятие заусенцев, скругление углов, если это возможно по условиям изготовления детали, предварительный отжиг места соединения и т. п. Наиболее рациональной мерой является снижение амплитуды колебаний сварочного наконечника.  [c.39]

Суммируя сказанное, можно констатировать, что речь идет о приеме колебаний, уровень которых может быть ниже уровня тепловых излучений. Однако в соответствии с анализом, проведенным в гл. 2, в живых организмах такие слабые колебания воспринимаются и используются в целях управления. Поэтому важно было понять, как, на основе каких принципов это осуществляется в живой природе, и использовать соответствующие принципы.  [c.89]


Под шумом понимают беспорядочное сочетание звуков, различных по частоте и силе. Сила звука /, или интенсивность, представляет собой количество энергии, которое проходит за 1 сек через площадь 1 см , перпендикулярную направлению движения звуковой волны. Человеческий слух различает силу звука в очень широком диапазоне нижний порог слышимости отличается от верхнего болевого порога слышимости в 10 —10 раз. Чтобы охватить весь диапазон, улавливаемый человеческим ухом, и не оперировать большими числами, установлена логарифмическая шкала уровней звуковых колебаний. Уровень силы звука определяется как логарифм отношения некоторой силы звука / к силе звука пороговой слышимости о- Таким образом, весь диапазон от порога слышимости до болевого порога охватывается 13—  [c.218]

Напряжение Но выбирают возможно более низким. При этом больше крутизна фронта импульса (меньше х) и меньше вероятность ошибок на период колебаний. Уровень /о, однако, должен быть выше уровня помех.  [c.236]

Как указывалось ранее (гл. I), в любом веществе происходит флуктуация тепловых колебаний, в результате которой отдельные атомы приобретают значительно большую энергию, чем средний уровень энергии атомов, характеризуемый температурой данного тела. Эти атомы могут покидать равновесные положения в узлах решетки и перемещаться в междоузлиях, оставляя места в узлах решетки незанятыми.  [c.320]

Многочисленность и разнородность факторов, влияющих на долговечность (технический уровень эксплуатации, колебания эксплуатационных режимов, качество изготовления и т. д.), неопределенность многих факто-  [c.26]

В учебнике освещены основные вопросы сопротивления материалов, отражающие современный уровень науки и техники. Достаточно подробно изложены общие методы определения перемещении и метод сил, вопросы упругих колебаний, расчеты при действии повтор ю-переменных и ударных нагрузок. Приведены элементы теории тонкостенных оболочек, дано большое количество детально разобранных примеров. Обновлен и дополнен материал по методам расчетов. Дополнены также справочные данные.  [c.2]

При оптимальном синтезе механизмов сравнение вариантов решения на любой стадии проектирования производится при помощи показателей качества (выходных параметров синтеза). К показателям, учитываемым на первом этапе проектирования, относятся коэффициент полезного действия, точность воспроизведения заданной функции или заданной траектории, равномерность движения исполнительного звена, силы, возникающие в звеньях и кинематических парах, динамические нагрузки, уровень механических колебаний, виброакустическая активность.  [c.320]

На исследуемое вещество направляются два лазерных луча, разности частот которых совпадают с одной из частот собственных колебаний молекулы или кристалла, что приводит к изменению заселенности колебательных уровней. Для анализа используется дополнительный, так называемый пробный, луч. Фактически исследуется стоксово и антистоксово рассеяние пробного луча. Описанную схему принято называть схемой активной спектроскопии рассеяния света. Пробный луч в этой схеме может использоваться как для регистрации фазовых соотношений между элементарными возбуждениями в разных точках среды (между фазами колебаний разных молекул) — когерентная активная спектроскопия так и для регистрации разности населенностей уровней—некогерентная активная спектроскопия. Естественно, что в обоих случаях рассеянный сигнал, получаемый в схеме активной спектроскопии, существенно превышает уровень сигнала, получаемого в спонтанном комбинационном рассеянии.  [c.316]

Обратим внимание на определенное сходство рассеяния Мандельштама — Бриллюэна с комбинационным рассеянием света на молекулах. Пусть о — частота колебаний молекулы (если молекула двухатомная, то эта частота единственная молекулы с тремя (и более) атомами характеризуются несколькими колебательными частотами). При рассеянии света частоты со на такой молекуле возможен как переход молекулы на более высокий колебательный уровень, так и переход ее на более низкий колебательный уровень. В первом случае частота рассеянного света равна (О—О)о, э во втором — (о- -соо. Соответственно говорят о стоксовом и антистоксовом компонентах комбинационного рассеяния света.  [c.154]

Если же прикрепить к сосуду с двух сторон мягкие пружинки (рис. 191, б), то свободная поверхность жидкости при колебаниях банки уже не будет оставаться параллельной дну сосуда, а будет сама тоже колебаться. Причина этого заключена в том, что пружины, действуя на банку с некоторой силой, изменяют ее ускорение, в то время как на воду действует только сила тяготения Земли и ускорение воды при колебаниях в банке остается неизменным. Поскольку банка и вода движутся теперь с разными ускорениями, свободная поверхность воды меняет свое положение относительно сосуда. Так как при движении маятника в крайние положения пружины тормозят его движение, вода движется с большим, чем маятник, ускорением и набегает на край банки — уровень воды у этого края банки подымается. При движении банки к другому крайнему положению подымается уровень воды у другого края банки. Эти периодические подъемы уровня воды у краев банки и представляют собой явление приливов в простейшем виде.  [c.397]


Описанные выше собственные колебания молекулы СО2 используются в газовом лазере на углекислом газе. Упрощенная схема энергетических уровней молекул СОа и азота Na, входящих в состав газовой смеси лазера, приведена на рис. 8.4. Электронный поток газового разряда возбуждает с большой эффективностью колебания, соответствующие наинизшему уровню молекул азота Еу. Частота этих колебаний близка к частоте соа антисимметричных колебаний молекулы Oj. В результате неупругого столкновения молекул Na и СОа происходит возбуждение антисимметричного колебания СОа и молекула переходит на энергетический уровень а- Этот уровень метастабилен. С него возможны переходы на более низкий возбужденный уровень симметричного колебания 3 и второй возбужденный уровень деформационного колебания 4. Уровни 3 и 4 близки, между ними в результате неупругого взаимодействия молекул существует сильная связь. Деформационные колебания молекулы СО легко передают свою  [c.293]

Этого недостатка лишена четырехуровневая система рис. 32, б, в которой генерация осуществляется за счет переходов между мета-стабильным уровнем 3 и незаселенным уровнем 2. Для выполнения этого условия частицы не должны переходить с уровня / на уровень 2 вследствие взаимодействия с тепловыми колебаниями решетки матрицы. При выполнении этого условия заселенность уровня 2 очень мала и эффект генерации наблюдается при малой интенсивности накачки. Четырехуровневую систему реализуют, используя в качестве активаторов ионы редкоземельной группы элементов периодической системы.  [c.64]

Следование трещины по направлениям, перпендикулярным к наибольшим нормальным напряжениям, отчетливо проявляется при переменном кручении валов. На рис. 6.7 приведена фотография шейки коленчатого вала двигателя, на которой видны треш,ины усталости в зоне расположения отверстия для смазки, возникшие от крутильных колебаний, и наклоненные приблизительно под 45° к образующим поверхности шейки. По соответствующим площадкам действуют наибольшие нормальные напряжения. На условиях возникновения и распространения трещины сказываются концентрация напряжений, обусловленная неровностями обработки, и уровень нагруженности.  [c.115]

Несущая способность элементов конструкций по сопротивлению усталости при циклическом нагружении рассматривается в свете вероятностных представлений о возникновении разрушения и об уровне действующих переменных напряжений. При этом следует иметь в виду основные условия нагруженности изделий и их элементов. Многим из них свойственны стационарные режимы переменной напряженности, уровень которой в пределах большого парка однотипных конструкций и их деталей от изделия к изделию меняется, причем отклонение уровней носит случайный характер. Примером таких деталей являются лопатки стационарных турбомашин. Условия возбуждения колебаний этих деталей в однотипных машинах зависят от изменчивости условий газодинамического возбуждения и механического демпфирования, уровня частоты собственных колебаний и эффекта их связности в роторе с лопатками (что обычно является результатом технологических отклонений). Подобные условия имеют место и для многоопорных коленчатых валов стационарных поршневых машин при укладке их на не вполне соосные опоры, для шатунных болтов из-за неодинаковости их монтажной затяжки и т. д.  [c.165]

Характеристики колебательных систем (амплитуды, частоты, силы) можно уменьшить до допускаемых пределов выбором параметров соответствующей динамической модели. Например, динамические нагрузки в кулачковых механизмах могут быть уменьшены за счет выбора профиля кулачка. Снизить уровень колебаний иногда удается применением демпферов — устройств для увеличения сил сопротивления, зависящих от скорости. Удачно применяются демпферы в системах, подверженных ударным воздействиям. Но нельзя утверждать, что во всех случаях демпфирование приводит к уменьшению колебаний. В тех случаях, когда выбором параметров системы или демпфированием не удается снизить уровень колебаний, применяют дополнительные устройства для защиты от вибраций — виброзащитные системы.  [c.135]

В тех случаях, когда путем оптимального выбора параметров системы или путем демпфирования не удается снизить уровень колебаний, применяются дополнительные устройства для защиты от вибраций — виброзащитные системы.  [c.334]

Несмотря на различия собственных частот по всем тонам изгибных и крутильных колебаний, процессы изменения во времени нормальных и касательных напряжений имеют синфазный характер. Максимальный и минимальный уровень напряжений по каждому из двух рассматриваемых направлений совпадает в любой момент времени при полете ВС. Синфазное изменение касательных и нормальных напряжений — наиболее типичная ситуация с реализацией напряженного состояния в различных зонах крыла самолета и обшивки киля. Напряженное состояние крыла, по указанным выше зонам самолета Ил-18, характеризуется следующим диапазоном изменения главных напряжений Oi и 02 в типовом полете И МПа < Oi < 90 МПа -95 МПа < Оз < 4 МПа -1,8 < 0i/02 = К < 1,5.  [c.30]

Последний полет самолета, а следовательно, работа лопатки с развивающейся трещиной, продолжался в течение 12 мин. Массивная лопатка первой ступени вентилятора имеет максимальный уровень резонансных напряжений на частоте 200 Гц. Если предположить, что в течение всего последнего полета лопатка имела резонанс на указанной частоте нагружения (т. е. на нее все время в полете действовала максимальная переменная нагрузка), то длительность ее работы составит 12 X 60 X 200 = 144000 циклов. Следовательно, даже если лопатка все время в полете находится в условиях резонанса с указанной частотой колебаний, когда и реализуется в ней максимальный уровень напряжения, то период роста трещины в ней мог быть реализован не менее чем в двух полетах. Трещина в лопатке в предыдущем полете уже была.  [c.585]

Очистку рукавов фильтра можно выполнить ультразвуковыми колебаниями. Уровень звукового давления не должен быть ниже 125 дб при частоте 200—4000 гц определяется он конструкцией фильтра и свойствами прилипшей пыли. Ускорение, получаемое прилипшим к ткани слоем пыли (а следовательно, ш степень очистки), зависит от расстояния между источником колебания и рукавом фильтра. С увеличением этого расстояния до 20 см и более удаление прилипшего слоя ухудшается. Ослабление сил вибрации может кюмпенсироваться скручиванием рукава фильтра на 30—40°, что обеспечивает ломку прилипшего слоя °  [c.277]

Образование газожидкостной системы при вибрации. Следуя работе С. С. Григоряна, Ю. Л. Якимова, Э. 3. Апштейна (1965), опишем процесс образования газожидкостной системы и ее эволюции при вертикальных колебаниях цилиндрического сосуда с жидкостью ) с частото 20—200 с . При низких частотах жидкость покоится относительно трубы. При более высоких частотах (около 50 Гц) начинается придонная кавитация. Ядра кавитации в придонной зоне (20—30 см от дна) растут в фазе разрежения и схлопывания в фазе повышения давления. Схлопывание пузырьков приводит к ударам. На свободной поверхности жидкости возникают брызги и образующиеся прп этом пузырьки воздуха устремляются вниз. Как было показано выше, это объясняется тем. что при достаточно интенсивных колебаниях уровень захвата практически совпадает со свободной поверхностью (2ц, л Ь), и пузырьки, которые попадают ниже уровня захвата опускаются на дно сосуда. Скопление  [c.164]


Широкое признание надежности ультразвуковой дефектоскопии привело к необходимости создания метода количественной расшифровки показаний дефектоскопов. В результате контроля должны быть указаны не только наличие или отсутствие дефектов, но также и размеры их, по крайней мере в области допустимых по техническим условиям. Из рассматриваемых пяти методов ультразвуковой дефектоскопии только резонансный метод при измерении толщин дает возможность количественного определения дефекта (в данном случае отклонения от номинального размера). В теневом и в зхометоде так же, как и в акустических методах — импедансном и свободных колебаний, прямой связи между показаниями индикатора и размерами обнаруженного дефекта обычно нет. Поэтому необходимо изучить зависимость показаний от размеров дефекта при различных условиях его обнаружения. К таким условиям относятся глубина залегания и ориентировка дефекта, тип дефекта, свойства контролируемого материала (коэффициент затухания ультразвуковых колебаний, уровень структурной реверберации) и ряд других. Теоретический анализ таких зависимостей и аналитическое выражение их является весьма сложной задачей. В СССР ведутся работы по созданию теоретических основ ультразвуковых и акустических методов.  [c.112]

Через весь описанный тракт, кроме звукового сигнала, проходит также специальный контрольный сигнал, в виде непрерывного синусоидального колебания, уровень которого на 25 35 дБ  [c.297]

Учитывая колебание объема масла в корпусе, минимальный уровень масляной ванны ограничивают центром нижне1 0 тела качения подшипника. Однако в ряде случаев, чтобы обеспечить надежное смазывание зацепления, приходится значительно повышать уровень масла.  [c.150]

Физический маятник представляет собой тело массы т, вращающееся вокруг горизонтальной оси его момент инерции I и смещение / центра масс относительно оси считаются заданными. Силы сопротивления, пропорциональные скорости, таковы, что при свободных колебаниях маятника отношение предыдущего разма.ха к последующему равно q. Точка подвеса маятника совершает горизонтальные случайные колебания. Ускорение т точки подвеса можно считать белым шумом постоянной интенсивности Определить установившееся среднее квадратическое значение угла отклонения маятника при вынужденных колебаниях, а также среднее число выбросов п угла за уровень, в 2 раза превышающий среднее 1свадратнческое значение в течение времени Т.  [c.447]

Так как модуль упругости сплавов определяется модулем упругости основного компонента я мало зависит от содержания (в обычных количествах) легирующих элементов (например, для сталей колебания заключены в пределах = (19 -г 22) 10 кгс/мм , для сплавов А1 в пределах = (7 н- 7,5) 10 кгс/мм , то в случае деталей одинаковой конфигурации, когда на первом плане стоят требования жесткости, а уровень напряжений невысок, целе-сообразно применять наиболее дешевые материалы (углеродистые стали вместо легированных, алюминиевые сплавы простого состава вместо сложнолегированных). Если же наряду с жесткостью имеет значение прочность, то предпочтительны прочные сплавы.  [c.211]

Рассмотренные по1решности, многократно периодически проявляющиеся за оборот колеса, снижают долговечность скоростных и особенно тяжелопагруженных скоростных передач (например, турбинных редукторов). Oini вызывают повторяющиеся разрывы контакта сопряженных зубьев, крутильные колебания привода, поперечные колебания валов и вибрацию всего агрегата. Указанные циклические погрешности обычно вызывают повышение шумовых харак.теристик, причем уровень шумовой мощности увеличивается с увеличением частоты вращения передачи. Чтобы повысить плавность передачи, целесообразно повышать точность зуборезного инструмента и червяка, сопряженного с делительным колесом станка, а также применять шевингование и зубохонингование колес.  [c.312]

Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]

Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]

Отсюда заключаем, что как скорость в туннеле, так и уровень воды в резервуаре изменяются во времени по закону синусоиды первая —в пределах -floмaк l и — [омакс , второй —между значениями +1 Умакс и — IУмакс > причем колебания скорости происходят по отношению к колебаниям уровня с опозданием в фазе на 90 , или во времени на  [c.148]

Для энергии октупольного кванта получается значение примерно в два раза выше, чем для квадрупольного (при одном и том же А). В применении к ядру на согласие формул (3.1) и (3.2) с опытом можно надеяться в лучшем случае для самых низких уровней, т. е. при КВ = 1, 2 и при Покт = 1- Действительно, при увеличении Покт, во-первых, наверняка нарушится гармоничность колебаний, а во-вторых, станут энергетически возможными возбуждения других типов, что резко осложнит энергетический спектр. Посмотрим теперь, насколько согласуются с опытными данными предсказания капельной модели о спектре низколежаш,их уровней ядер. Согласно сказанному чуть выше, если основной уровень имеет характеристику O ", то первым возбужденным должен быть уровень 2+ с энергией, определяемой формулой (3.2). В два раза выше должен лежать уровень 3. Вблизи уровня 3" должны находиться еще три очень близких друг к другу уровня, соответствующих возбуждению  [c.86]

Для выбора значения К, обеспечивающего примерно постоянный и минимальный уровень вибрации во всем диапазоне частот, необходимо получить семейство амплитудно-частотных характеристик или зав (си-мостей 2] = / (со) для разных значений К- При значениях К = оо (т. е. массы и движутся как одно целое) реакция системы будет такой же, как реакция системы с одной степенью свободы, имеющей массу т - rri2) и жесткость j. При значении К = О колебания на фундамент не передаются при условии соблюдения равенства со = V il/rii — Y С Im .  [c.39]

Снизить уровень колебаний иногда удается применением демпферов, т. е. устройств для увеличения сил сопротивления, аависянщх от скорости. Например, в системах автоматического регулирования применяются гидравлические демпферы, называемые также катарактами (см. рис. 88,г). Удачно применяются демпферы в системах, подверженных ударным воздействиям. В этом случае они называются поглотителями колебаний. Но нельзя утверждать, что во всех случаях увеличение демпфирования приводит к уменьшению колебаний.  [c.334]


Смотреть страницы где упоминается термин C—D колебание уровней : [c.164]    [c.155]    [c.263]    [c.75]    [c.134]    [c.149]    [c.858]    [c.204]    [c.447]    [c.165]    [c.166]    [c.715]    [c.26]    [c.249]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.53 ]



ПОИСК



Dm (см. также Dsh потенциальная энергия и уровни энергии при крутильных колебания

Ангармоничность колебаний 219 (глава колебательные уровни линейных молекул

Ангармоничность колебаний 219 (глава колебательные уровни молекулы

Ангармоничность колебаний 219 (глава колебательные уровни пирамидальных

Ангармоничность колебаний 219 (глава колебательных уровней

Введение. Уровни энергии. Собственные функции. Вырожденные колебания Симметрия нормальных колебаний и колебательных собственных функций

Вращательные уровни влияние взаимодействия с колебанием

Вырождение высоких колебательных уровней вырожденных колебаний

Вырождение уровней энергии крутильных колебани

Вырожденные колебания более высоких колебательных уровне

Вырожденные колебания электронно-колебательные уровни

Кабанова О.Е. Определение допустимого уровня колебаний трубопроводов поршневых компрессорных машин

Классическое движение. Уровни энергии. Влияние нежесткости. Свойства симметрии и статистические веса. Инфракрасный вращательный спектр. Комбинационный спектр КОЛЕБАНИЯ, КОЛЕБАТЕЛЬНЫЕ УРОВНИ ЭНЕРГИИ И КОЛЕБАТЕЛЬНЫЕ СОБСТВЕННЫЕ ФУНКЦИИ Нормальные колебании, классическая теория

Колебание уровня деформации растяжения

Колебательные уровни энергии 75, 89 (глава крутильных колебаний

Колебательные уровни энергии 75, 89 (глава типы симметрии для многократного возбуждения одного или нескольких колебаний 139 (глава К, Зд)

Невырожденные колебания более высоких колебательных уровне

О нелинейных задачах теории нестационарной фильтраО движениях грунтовых вод при колебаниях уровня воды в водохранилище с вертикальной границей

Оценка уровня колебаний зданий

Подуровни более высоких колебательных уровней вырожденных колебаний

Приборы измерительные — Допустимые уровни колебаний оснований

Простая потенциальная поверхность. Классическое ангармоническое движение. Уровни энергии. Колебательные собственные функции Влияние ангармоничности на (не случайно) вырожденные колебания

Расчетная оценка уровня колебаний грунта вблизи туннелей метрополитена

Расчетное определение уровня высокочастотной вибрации, возбуждаемой газодинамическими колебаниями давления в цилиндрах двигателей

С2Не, этан потенциальная энергия и уровни энергии крутильных колебаний, отношение к свободному вращению

Соотношение между уровнями энергии свободного вращения и крутильного колебания

Сопоставление расчетных колебаний уровня с опытными данными

Способы снижения уровня колебаний существующих фундаментов неуравновешенных машин

Уровень максимальный устойчивых стационарных колебаний



© 2025 Mash-xxl.info Реклама на сайте