Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

109 - Сущность газах

Объясните сущность газо-лазерной резки.  [c.119]

Наиболее распространенным и эффективным способом является регенерация энергии. Сущность регенерации заключается в передаче энергии от выходящих из агрегата потоков к входящим. Например, многие крупные нагревательные и плавильные печи оборудованы теплообменниками, в которых воздушное дутье (а иногда и газообразное топливо) подогревается уходящими газами (рис. 24.2).  [c.204]

Поэтому сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.  [c.28]


Сущность обработки состоит в том, что плазму (полностью ионизированный газ), имеющую температуру 10 000—30 ООО С, направляют на обрабатываемую поверхность заготовки.  [c.415]

Сущность технологического процесса плазменной резки заключается в том, что под воздействием тепла электрической сжатой дуги металл обрабатываемого изделия плавится, а струя газа, вытекающая из мундштука, удаляет расплавленный металл из зоны реза.  [c.134]

Газовая коррозия в колоннах синтеза аммиака происходит вследствие воздействия водорода на металл при высокой температуре. В современных колоннах влияние высокой температуры на стенки корпуса парализуется защитным холодным газовым слоем. Сущность защиты сводится к тому, что наружный толстостенный корпус колонны (рис. 50) отделяется от горячих внутренних деталей слоем быстродвижущегося холодного газа, поступающего на реакцию.  [c.88]

До сих пор не говорилось о том, каким образом может быть измерена скорость звука. Выше мы обращали внимание на отклонение свойств газа от идеального состояния и отмечали, что скорость Со относится к безграничному пространству. На практике, особенно в области низких температур, скорость звука измеряется в относительно небольшой колбе, которая должна иметь постоянную температуру. В настоящее время наиболее точные измерения скорости звука осуществляются при помощи акустического интерферометра с цилиндрическим резонатором. Акустические волны возбуждаются в трубе излучателем, расположенным на ее конце длина волны находится измерением перемещения отражателя между соседними резонансными максимумами. Положение стоячих волн определяется по импедансу излучателя. В этом состоит одна из трудностей акустической термометрии по сравнению с газовой. В газовой термометрии измеряемые величины, объем и давление, являются величинами статическими, хотя и существуют проблемы, связанные с сорбцией, о которой говорилось выше. В акустической термометрии измеряемые величины носят динамический характер — это акустический импеданс излучателя, например, при 5 кГц, вязкость и теплообмен со стенками трубы. Все это оказывается источником специфических трудностей при измерении, и для правильной интерпретации результатов измерения необходимо полное понимание физической сущности процессов распространения акустических волн.  [c.101]

Сущностью и отличительной особенностью дуговой сварки в защитных га.зах является защита расплавленного и нагретого до высокой температуры основного и электродного металла от вредного влияния воздуха защитными газами, которые обеспечивают физическую изоляцию металла и зоны сварки от воздуха и заданную атмосферу в зоне сварки.  [c.79]

Выше речь шла о комбинационном рассеянии света, возникающем при взаимодействии первичного излучения с молекулами среды. Вполне аналогичное явление наблюдается и при рассеянии света атомами и ионами. Для выяснения сущности дела следует вспомнить о результатах изучения абсорбции и дисперсии света в атомных газах.  [c.606]

Типы квазичастиц. Атомная динамика идеального (беспримесного, бездефектного) кристалла описывается коллективными волновыми движениями. С квантовой точки зрения эти движения эквивалентны газу неких частиц, энергия е и импульс р которых выражаются через частоту волн и волновой вектор с помощью известных соотношений е=Ай и p=flq. Частицы, сопоставляемые с коллективными волновыми движениями в кристалле, называют квазичастицами. Формально мы получаем квазичастицы, производя квантование волн, распространяющихся по кристаллу. Представление кристалла в виде газа квазичастиц составляет сущность метода квазичастиц (метода элементарных возбуждений). Этот метод является основным в современной теории твердого тела он позволяет свести крайне сложную динамику огромного коллектива взаимодействующих реальных частиц (атомов кристалла) к относительно простой динамике газа квазичастиц.  [c.146]


Для правильного и целостного представления физической сущности процесса прохождения газожидкостных смесей в закрученном потоке газа, движущемся в прямоточных центробежных элементах, необходимо изучение распреде.ления скоростей и давлений по радиусу и сечениям этих элементов.  [c.282]

Для будущих учителей физики, для которых в основном и предназначается эта книга, особенно важное значение имеет не только понимание сущности рассматриваемых физических явлений, но и умение объяснить их наиболее простым образом. Поэтому в пособии по возможности уделено большое внимание объяснению механизма физических явлений, нередко скрытого за применяемым математическим формализмом. Кроме того, учитывалось, что некоторые вопросы (механика жидкостей и газов, основы акустики и др.) изучаются в классической механике в окончательном виде, так как в дальнейшем в курсах теоретической физики и других дисциплинах они не рассматриваются более подробно.  [c.3]

Изучение приведенного в этой главе материала позволяет последовательно выяснить природу скачков уплотнения, в каких случаях и почему они возникают, понять сущность физических процессов, происходящих при переходе газа через фронт скачка уплотнения, как в простейшем случае, когда теплоемкость газа не изменяется (сверхзвуковые скорости с числами Маха не более 5—6), так и в условиях гиперзвуковых скоростей, когда необходимо учитывать насыщение колебательны  [c.98]

Физическая сущность эффекта дросселирования реального газа или пара состоит в следующем.  [c.116]

Формула (5.5.13) была получена в результате интерполяции числовых значений теплового потока, найденных путем численного интегрирования уравнений гиперзвукового равновесного пограничного слоя. Она, в сущности, не отличается по структуре от граничных условий третьего рода, но вместо разности температур использована разность энтальпий газа на внешней границе пограничного слоя и на поверхности твердого тела.  [c.215]

Для более полного уяснения сущности происходящих процессов полезно проанализировать в рамках кинетической теории случай, когда давление в правом сосуде перед открыванием вентиля не равно нулю. Представляет интерес и такой вопрос справедливо ли утверждение внутренняя энергия идеального газа не зависит от объема с точки зрения кинетической теории для процесса изменения объема, изображенного на рис. 2.1, в, если стенка цилиндра и поршень образуют адиабатную оболочку  [c.23]

В результате анализа возникают по меньшей мере два вопроса. Во-первых, вопрос о физической сущности ограничения степени превращения внутренней энергии в кинетическую этот вопрос рассмотрим позднее. Во-вторых, вопрос о правильности формулировки задачи об истечении газа. Ведь формула (7.36) выражает первый закон термодинамики и вдруг оказывается, что применение этого закона — закона сохранения энергии — ограничено условием Сомнения, связанные со  [c.179]

Первоначально эти законы были установлены экспериментальным путем при этом в опытах применялся газ в состояниях, далеких от жидкого состояния. В дальнейшем из молекулярно-кинетических представлений о строении тел и сущности тепловой энергии было установлено, что давление газа численно равно двум третям кинетической энергии поступательного движения молекул газа, заключенных в единице объема (основное уравнение кинетической теории) это положение и является ИСХОДНЫМ при теоретическом выводе законов идеальных газов.  [c.25]

Объясните сущность внутренней энергии идеального и реального газов с молекулярной точки зрения.  [c.43]

Между тем, для оценки надежности работы металла экранных труб необходимо знать температуры газов и величину по высоте топки. Для этой цели используют позонный метод расчета. Сущность его состоит в следующем. Топку по высоте (около 4 м) разбивают на несколько зон (/—IV). Отдельно выделяют зону максимального тепловыделения. Для каждой зоны составляют уравнение баланса энергии с учетом теплоты Q p. выделенной при горении топлива, изменения / энтальпии газов на входе и Г на выходе из зоны и теплоты лучистого теплообмена. При расчете теплоты, переданной экранам, учитывается фактор радиационного теплообмена с зонами, расположенными рядом.,  [c.186]

Формула (9.20) называется формулой Эйлера, ее легко получить непосредственно из формулы (9.19), если рассмотреть установившееся абсолютное движение жидкости или газа, для которого = 0. Естественно использовать этот простой и непосредственный вывод формулы Эйлера, однако предыдущий вывод тоже несложен и вместе с этим полезен для более глубокого понимания сущности этой задачи и относительного движения.  [c.112]

Рассматриваемые ниже циклы являются идеализацией действительных процессов, протекающих в реальных двигателях. Сущность этой идеализации состоит в том, что действительные процессы заменяют обратимыми термодинамическими процессами идеальных газов, что дает возможность использовать при их анализе необходимые закономерности, полученные выше для идеальных газов.  [c.70]

Поле зацепления. До сих пор, в сущности, рассматривалось только зацепление плоских шаблонов, имеющих форму сечения цилиндрического колеса плоскостью, параллельной торцовой. Прямые зубья реальных цилиндрических колес, образующих передачу, соприкасаются не в точке, а по контактной линии, параллельной осям вращения колес, которая проецируется в точку С на торцовую плоскость. При вращении колес эта контактная линия перемещается в пространстве вместе с точкой С. След ее движения образует плоскость, или поле зацепления (рис. 9.11), ширина которого Ь равна ширине колес, а длина ga — длине активного участка линии зацепления. Активный участок ограничивают точки пересечения окружностей вершин (с радиусами Гах, Газ) с линией зацепления NyN . Как было показано на рис. 9.7, расстояние между двумя соседними эвольвентными профилями, измеренное по общей нормали к ним (а линия зацепления NiN и есть такая общая нормаль), равно pi,i — шагу зубьев по основной окружности. Так как шаг ры = л /2, то с учетом формулы (9.8)  [c.245]


Теплоту сгорания топлив определяют с помощью калориметрической бомбы. Сущность этого метода заключается в том, что навеску испытываемого топлива сжигают в стальном толстостенном сосуде-бомбе, герметически закрывающемся и наполненном кислородом под давлением 25 кгс/см (24,6 40 Па). Развивающееся при сжигании навески тепло передается воде калориметра, в котором помещается бомба. По повышению температуры воды в калориметре рассчитывают теплоту сгорания топлива. Для газообразного топлива используют газовые калориметры. В них определенное время сжигают газ, количество которого измеряется счетчиком. Тепло воспринимается потоком воды с заданным расходом. Расхождение между двумя параллельными определениями теплоты сгорания в калориметрической бомбе не должно превышать 0,1675 МДж/кг.  [c.104]

Сущность способа. Наиболее широко распространен процесс при использовании одного электрода — однод говая сварка. Сварочная дуга горит между голой электродной проволокой I и изделием, находящимся под слоем флюса 3 (рис. 25). В расплавленном флюсе 5 газами и парами флюса и расплавленного металла образуется полость — газовый пузырь 4, в котором существует сварочная дуга. Давление газов в газовом пузыре составляет 7—  [c.32]

Сущность способа. При сварке в зону дуги I через сопло 2 непрерывно подается защитный газ 3 (рис. 36). Теплотой дуги расплав.тяется основной металл 4 и, если сварку выполняют  [c.44]

Сущность способа. Плазма — ионязированньп газ, содержащий электрически заряженные частици и способный нроводить ток. Ионизация газа происходит при его нагреве. Степень ионизации  [c.64]

Сущность II техника спарки электронным лучом. Сущность процесса состоит в использовании кинетической энергии потока электронов, движуп1ихся с высокими скоростями в вакууме Для умоиыиения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для хими ческой и тепловой защиты катода в электронной пушке создают вакуум пор>гдка 10 —10" мм рт. ст.  [c.67]

Из изложенного выше следует отметить необходимость дифференцированного в зависимости от характера псевдоожижения подхода к данным моделям. По мнению Баскакова [49], пакетные модели справедливы для пузырькового и, возможно, турбулентного режимов псевдоожижения. Механизм теплообмена с газовыми пузырями при низкой концентрации частиц, естественно, иной, чем со сплошной фазой слоя. Здесь наиболее приемлемой может быть модель Забродского [20] или Буевича [74], согласно которой частицы получают тепло от газа, выполняя роль стоков тепла в стационарном газовом пограничном слое. Что же касается слоев крупных частиц, то все перечисленные модели, за исключением, возможно, Васана и Алювалья, не отражают сущность процесса.  [c.60]

Многочисленные экспериментальные исследования, описанные в [18, 20], показали, что зависимость максимальных.коэффициентов теплообмена псевдоожижениого слоя с поверхностью от диаметра частиц имеет немонотонный характер. Сначала с ростом диаметра наблюдается резкое падение атаь затем следует довольно широкий интервал значений а, когда изменения максимальных коэффициентов теплообмена незначительны, т. е. наблюдается область очень пологого экстремума функции атах = = f(d), и, наконец, начиная с d = 2—3 мм, происходит постепенное увеличение атах- Описанное явление, естественно, сопровождается изменением механизма теплообмена, сущность, которого объясняется смещением акцента с кондуктивного на конвективный перенос тепла фильтрующимся газом.  [c.61]

Наиболее совершенной в настоящее время является фотометрическая методика, различные варианты которой описаны в [139, 151 —154]. Сущность этой методики — в кино- или фотосъемке через прозрачное окно частиц слоя одновременно с укрепленной на внешней поверхности визира и погруженной в дисперсную среду моделью абсолютно черного тела. По отношению оптических плотностей изображений слоя либо отдельных ча стиц и модели а. ч. т. можно определить при известной температуре системы степень черноты слоя и образующих его частиц (чего не допускают все другие методы). С помощью киносъемки можно измерять динамические характеристики. Например, при известных свойствах частиц определять температуру отдельных частиц и скорость их остывания [154]. Исследования, выполненные с использованием этой методики, позволили одновременно проследить изменения структуры псевдоожи-жепного слоя вблизи.поверхности и лучистого потока при поочередной смене пакетов частиц и пузырей газа [139, 152].  [c.138]

Сущность сварки в среде Oj состоит в том, что дуга горит в среде защитного газа, оттесняющего воздух от зоны сварки и защищающего наплавленный металл от О, и N2 воздуха. Особенностью данной сварки является сравнительно сильное выгорание элементов, обладающих большим сродством с Oj (С, А1, Ti, Si, Мп и др.). Окисление происходит за счет как Oj, так и атомарного О, который образуется при диссоциации Oj под действием тепла дуги. Непрерывный уход окислов С, Si, Мп из ванны приводит к значительному обеднению металла шва раскисли-телями, что ухудшает механические свойства соединения. Поэтому для получения качественных соединений необходимо при сварке в среде Oj иметь в сварочной ванне достаточное количество раскисляющих элементов, которые обычно вводят за счет проволоки (Св-08Г2С, Св-08ГС).  [c.61]

В 1824 г. Сади Карно, французский инженер и ученый, и своих рассуждениях о движущей силе огня изложил сущность ьторого закона. Он писал Повсюду, где имеется разность температур, может происходить возникновение движущей силы. Движущая сила тепла не зависит от агентов, взятых для ее развития ее количество исключительно определяется температурой тел, между которыми, в конечном счете, производится перенос теплорода. Температура газа должна быть первоначально как можно выше, чтобы получить значительное развитие движущей силы. По той же причине охлаждение должно быть как можно больше. Нельзя надеяться, хотя бы когда-нибудь, практически использовать всю движущую силу топлива .  [c.108]

Дальнейшие наблюдения показали, что наличие мелких частиц пыли в атмосфере не может являться единственной причиной голубизны неба и поляризации света неба. Как стало нзпестно из наблюдений в горных обсерваториях, чем чиш,е воздух, (т. е. чем меньше присутствует в атмосфере мелких частиц пыли), тем больше голубизна неба и тем полнее поляризация света неба. Этот факт послужил основанием Рэлею еще раз ве )нуться к задаче рассеяния света в атмосфере и объяснить голубой цвет неба молекулярной структурой воздуха. На этот раз Рэлей в ос1Юву своей теории положил тот факт, что рассеяние света происходит не иа частицах пыли, а на самих молекулах газов, составляю щих воздух. Сущность этой теории Рэлея излагается в начале следующего параграфа.  [c.309]

Постоянная Лошмидта. От гипотезы Авогадро до первых попыток определения числа молекул в заданном объеме газа прошло 50 лет. Они быпш годами разработки учеными основных представлений о внутреннем строении газов, основ молекулярно-кинетической теории, выяснения физической сущности газовых законов. К открытому Бойлем — Мариоттом закону (29) спустя почти 150 лет добавился закон Гей-Люссака, связывающий линейной зависимостью увеличение объема газов и повышение их температуры. Эти два опытных закона были объединены в один обшд1Й закон Менделеева — Клапейрона  [c.66]


Разогрев газа при прохонодении его через ударную волну в детонационном горении заменяет собой в сущности подогрев его теплопроводностью в нормальном горении.  [c.218]

Людвиг Прандтль (1875—1953) — немецкий ученый в области механики, один из основателей экспериментальной аэродинамики. Наиболее значительные результаты получил в области течений вязких жидкостей и газов. Создал полу-эмпирическую теорию турбулентности, нашедшую широкое применение, получил фундаментальные результаты в теории пограничного слоя, проявив при этом уникальную физическую интуицию и глубокое понимание сущности явлений. В Геттингенском университете создал школу гидроаэродинамики, которая известна крупными научиыми достижениями,  [c.94]

Сущность этих явлений можно объяснить следующим образом. Происхождение сил вязкости и возникновение процесса теплопроводности в газе связаны с молекулярным строением вещества. Перемеш,ение молекул в объеме газа из одного места в другое приводит к переносу энергии и количества движения. При этом изменение количества движения вызывает появление силы вязкости, а перенос энергии обусловливает свойство теплопроводности. Поэтому с увеличением температуры увеличиваются теплопроводность и динамическая вязкость в газовой среде. При возникновении диссоциации характер изменения X и л довольно сложный (рис. 1.29). При малой степени диссоциации значения X снижаются, что вызвано затратами внутренней энергии на разрыв молекулярных связей. При повышении степени диссоциации более интенсивное дробление молекул на атомы приводит к росту числа частиц, участвующих в процессах переноса и, следовательно, к увелйчению теплопроводности X. При очень сильном разогреве газа значительно увеличиваются затраты внутренней энергии на ионизацию, что снижает теплопроводность.  [c.35]

Т2<.Т ) отдается теплота Q2, а разность этих теплот Ql — Q2 превращается в полезную работу >0, которая и передается внешнему потребителю. На диаграмме рис. 4.1 на пути 1Ь2 газ совершает работу расширения, определяемую площадью 1Ь2(1е, при подводе Ql теплоты. На пути 2с1 идет работа сжатия, определяемая площадью е1с2ё, при отводе Q2 теплоты. Площадь 1Ь2с характеризует работу Ь, которая отдается внешнему потребителю. Сущность процессов тепловых двигателей заключается в том, что неравенство количеств подведенной Ql и отведенной Q2 теплоты сопровождается и неравенством полученной при расширении работы и работы, затраченной на сжатие. При этом работа расширения всегда больше работы сжатия.  [c.51]

Несмотря на внешнее сходство формул для /г онд и Лисп, эти величины, в сущности, не имеют между собой ничего общего Лконд определяется свойствами газа. Лисп зависит от энергии, необходимой для преодоления сил межмолекулярного сцепления в материале поверхности. Если давление р Ф р, то испарение является неравновесным и массовая скорость уноса материала поверхности определяется формулой Герца—Кнудсена  [c.91]

Из этих формул видно, что порядок членов, учитывающих вязкие силы, зависит от порядка кинематической вязкости. Известно, что для газов и невязких капельных жидкостей (например, для воды) величина V мала, однако не известно, каков порядок этой малости Для ответа на этот вопрос следует обратиться к сущности самой идеи о пограничном слое в качестве его выделяется такая область потока, где силы вязкости имеют тот же порядок, что п силы инерции. Видно, что если 0(v)=6 , то последний член уравнения (14.36) или символической формулы (14.36 ) имеет конечный порядок, как и инерционные члены в его левой части (например, если принять 0(v)=б, то это условие выполнить нельзя). В уравнении (14.37) или символической формуле (14.37 ) при 0(v)=б все члены, кроме сил давления, бесконечно малы (точнее имеют порядок Шуу, д или еще более высокий порядок малости). Следовательно, из выражения (14.37) имеем др1ду = 0, т. е. давление в направлении поперек пограничного слоя не изменяется. Оно равно давлению во внещнем потоке, которое в общем случае может изменяться вдоль оси Ох, например, при обтекании криволинейной поверхности ИЛИ В потоке на начальном участке трубы. Предполагается, что во внешнем потоке отсутствует трение, это приводит к простой зависимости между скоростью гюо и давлением ро в этой области. Такая зависимость получается из уравнения (14.36), если отбросить члены, учиты-  [c.343]

Уравнение состояния водяного пара Вукаловича — Новикова получено на основе развитой авторами теории ассоциации реальных газов, сущность которой заключается в следующем.  [c.256]


Смотреть страницы где упоминается термин 109 - Сущность газах : [c.59]    [c.47]    [c.135]    [c.244]    [c.92]    [c.56]    [c.269]   
Сварка Резка Контроль Справочник Том1 (2004) -- [ c.125 , c.126 ]



ПОИСК



109 - Сущность плавящимся электродом в инертном газе

Оборудование для дуговой сварки в защитных газах Сущность сварки в защитных газах

Сущность

Сущность дуговой сварки в защитных газах

Сущность и разновидности дуговой сварки в защитных газах

Сущность наплавки в среде углекислого газа

Сущность сварки в инертном газе

Цианирование газовое сущность процесса, оборудование, состав газов



© 2025 Mash-xxl.info Реклама на сайте