Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реологические уравнения состояни

Реологическое уравнение состояния представляет собой соотношение, позволяющее вычислить напряжение как функцию кинематических переменных и в конечном счете как функцию поля скорости, возможно зависящего от времени. Если ограничиться рассмотрением жидкости с постоянной плотностью, то система уравнений (1-1.1)— (1-1.3) вместе с реологическим уравнением состояния может быть в принципе решена, как показано в табл. 1-1.  [c.13]

В этой книге рассматривается главным образом решение задач, основывающихся на системе уравнений, приведенной в табл. 1-1 и применяемой, в частности, к материалам, исследование поведения которых требует привлечения реологического уравнения состояния в сравнительно сложной форме.  [c.13]


Следует заметить, что классическая гидромеханика имеет дело с ситуацией, когда реологическое уравнение состояния сводится просто к утверждению, что напряженное состояние всегда изотропно, т. е. плотность определяется величиной давления. В классической механике ньютоновских жидкостей рассматривается ситуация, когда реологическое уравнение состояния имеет вид  [c.13]

I) Полное напряжение, включающее изотропное давление, может рассматриваться как единственная тензорная переменная. Реологическое уравнение состояния определяет полное напряжение с точностью до произвольного аддитивного изотропного тензора. Скаляр, на который умножается единичный тензор для получения этого изотропного тензора, является в этом случае скалярной переменной, вводимой вместо давления. Это будет разъяснено далее в разд. 1-8.  [c.14]

Для жидкостей с постоянной плотностью реологическое уравнение состояния определяет тензор напряжений лишь с точностью до произвольного аддитивного изотропного тензора. Тензор полных напряжений Т можно разбить на следующие два слагаемых  [c.47]

В классической гидродинамике идеальная жидкость определяется как материал, который не способен поддерживать девиаторные напряжения, так что тензор полных напряжений всегда изотропен. Это равносильно рассмотрению реологического уравнения состояния весьма специального вида  [c.48]

Приведенные рассуждения способствуют дальнейшему разъяснению точки зрения, высказанной в разд. 1-9 и касающейся вывода уравнения Бернулли на основании первого закона термодинамики, который часто встречается в руководствах по гидродинамике. На самом деле, если предположить справедливость реологического уравнения состояния (1-9.1), то диссипативный член т Vv обращается в нуль, т. а. в идеальных жидкостях не происходит диссипации энергии. Если первоначально принять это положение как интуитивное, то можно прямо записать уравнение (1-10.14) с нулевым последним членом в правой части и вычесть его из уравнения баланса энергии (1-10.13). Разумеется, при этом получим уравнение (1-10.6) (с V V. х = 0), т. е. уравнение Бернулли. Очевидно, что при таком подходе принимается предположение, что в некоторой точке вдоль линии тока нет диссипации. Несмотря на это, указанный подход имеет столь глубокие традиции, что используется всюду в гидромеханике ньютоновских жидкостей, хотя он не только логически небезупречен, но даже приводит к неправильным результатам ).  [c.52]

Ясно, что уравнение энергии не может использоваться, если неизвестна зависимость t/ynp от кинематических переменных. Эта зависимость отражена в энергетическом уравнении состояния , обсуждавшемся в разд. 1-1 такое уравнение не зависит от реологического уравнения состояния. Как следствие этой трудности энергетический подход очень редко применяется в гидромеханике неньютоновской жидкости взаимосвязь последней с термодинамикой будет подробно обсуждена в гл. 4.  [c.53]

РЕОЛОГИЧЕСКИЕ УРАВНЕНИЯ СОСТОЯНИЯ ДЛЯ ЧИСТО ВЯЗКОЙ НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ  [c.55]

Ясно, что ньютоновское реологическое уравнение состояния (1-9.4) неадекватно для описания поведения реальных жидкостей.  [c.57]


ТРЕБОВАНИЯ ОБЪЕКТИВНОСТИ РЕОЛОГИЧЕСКИХ УРАВНЕНИЙ СОСТОЯНИЯ  [c.57]

Реологическое уравнение состояния представляет собой математическую формулировку некоторых предположений, касающихся механического поведения материала или в более общем случае класса материалов. Эта математическая формулировка должна  [c.57]

Реологические уравнения состояния неньютоновской жидкости  [c.60]

Требование, чтобы реологические соотношения оставались инвариантными при изменении системы отсчета, очевидно, накладывает некоторые ограничения на реологические уравнения состояния при преобразовании тензоров, входящих в это уравнение, к новой системе отсчета реологическое уравнение состояния должно оставаться тем же самым.  [c.60]

После установления принципа объективности поведения материала можно проанализировать нелинейное реологическое уравнение состояния, устанавливающее соответствие между тензором напряжений т и тензором растяжения D )  [c.63]

Неадекватность уравнения (2-3.1) в отношении корректного предсказания поведения реальных материалов даже в течениях столь простого типа, как линейное течение Куэтта, выдвигает проблему построения реологического уравнения состояния более общего вида, в котором тензор напряжений т уже не является однозначно определенной функцией тензора растяжения.  [c.73]

Если попытаться включить понятие упругости в реологическое уравнение состояния, то сразу же столкнемся с основной проблемой определения упругости и жидкости . Интуитивно упругость представляется таким свойством материалов, которое предполагает, что внутренние напряжения определяются деформациями. В свою очередь, деформация может быть определена лишь в терминах конфигурации отсчета, т. е. через некоторое понятие предпочтительной формы рассматриваемого материала. Деформацию понимают как отклонение от этой предпочтительной формы.  [c.74]

Трусделл [16] предложил модель реологического уравнения состояния, которое, удовлетворяя принципу объективности поведения материала, объединяет оба понятия — упругость и текучесть — в единые рамки. Жидкость с конвективной упругостью определяется как материал, для которого напряжение зависит от деформации (т. е. как упругий материал ) однако эта деформация определяется не в терминах предпочтительной формы, а через отличие конфигурации материала в момент наблюдения (когда измеряется напряжение) от конфигурации материала в некоторый фиксированный момент, предшествующий моменту наблюдения.  [c.74]

Реологические уравнения состояния неньютоновской жидкости матрицы. Аналогично  [c.82]

Реологические уравнения состояния неньютоновской жидкости Внутренний диаметр 0,1 см  [c.86]

Метод конвективных координат, обсуждавшийся в этом разделе, имеет большое преимущество, заключающееся в том, что любое реологическое уравнение состояния, записанное в терминах конвективных тензорных компонент, удовлетворяет принципу объективности поведения материала. Применение этого метода сопряжено с рядом трудностей, которые мы попытались проиллюстрировать. Следует уяснить, что выбор между методом конвективных координат и методом векторного пространства определяется индивидуальной склонностью исследователя, и оба метода, если их правильно использовать, дают одинаковые результаты.  [c.116]

Значительно более общим выглядит предположение о том, что напряжение определяется полной историей деформации (в некотором смысле, который должен быть уточнен). Это предположение служит основой теории простых жидкостей с затухающей памятью, которая будет обсуждаться в этой главе. Предлагаемая теория аксиоматична в том смысле, что она логически вытекает из основополагающих предположений, которые рассматриваются как определения некоторого класса материала (а именно простых Жидкостей с затухающей памятью определенного типа) независимо от того, существуют ли в природе какие-либо материалы, удовлетворяющие этим предположениям. Тем не менее эта теория является настолько общей по своему характеру, что почти все реологические уравнения состояния, описанные в научной литературе, представляют ее частные случаи. Такая общность обеспечивает то, что все результаты, полученные в рамках этой теории, имеют очень широкую значимость. С другой стороны, в рамках общей теории можно решить лишь немногие проблемы механики жидкости, и для рассмотрения практических задач часто требуется использование более специальных основополагающих предпосылок.  [c.130]

При рассмотрении теории простых жидкостей часто встречается ситуация, когда некоторая зависимая переменная (как правило, напряжение) зависит от предыстории одной или нескольких величин (обычно от истории деформирования). Эти предыстории являются функциями времени, и, следовательно, реологическое уравнение состояния имеет форму функционала.  [c.140]

Сейчас мы в состоянии формализовать понятия, обсуждавшиеся в разд. 4-1, и получить реологическое уравнение состояния для простых жидкостей постоянной плотности с затухающей памятью.  [c.141]

ВХОДИТЬ и во все другие уравнения состояния. Поскольку предыстория F (s) появилась в реологическом уравнении состояния для простых жидкостей, следует предполагать, что она входит и в энтропийное уравнение состояния.  [c.158]

Уравнение (4-4.42) показывает, что реологическое уравнение состояния полностью определяется энтропийным уравнением. Оно представляет собой распространение на жидкости с памятью классического термодинамического результата, выраженного уравнением (4-4.5)  [c.162]


В то время как пренебрежение инерционными силами в уравнении движения в случае ньютоновских жидкостей приводит к уравнению (7-1.18), которое линейно (поскольку единственным нелинейным членом в уравнении (7-1.14) является член, описывающий инерционную силу), аналогичный результат не имеет места для неньютоновских жидкостей, когда уравнение, описывающее ползущее движение, остается нелинейным. Это справедливо независимо от того, в какой форме принимается реологическое уравнение состояния. В общем случае даже вид внутренних напряжений в неньютоновских жидкостях неизвестен.  [c.261]

Теория распространения разрывов в упругих твердых телах хорошо развита. То же самое можно сказать в отношении идеальных жидкостей (т. е. жидкостей, в которых могут возникать только изотропные внутренние напряжения). Обе теории не допускают затухания возмущений, поскольку применяемые для них реологические уравнения состояния описывают недиссипативные материалы (т. е. работа внутренних напряжений равна для таких материалов накоплению упругой энергии).  [c.293]

Вторая группа уравнений представляет запись определенных физических законов, описывающих поведение конкретных материалов. Вид этих уравнений зависит от класса рассматриваемых материалов значения параметров, появляющихся в уравнениях, зависят от конкретного материала. Имеются в основном четыре уравнения этой группы. В недавнем весьма общем подходе Коле-мана [1—3]рассматриваются уравнения, в точности определяющие следующие четыре зависимые переменные внутреннюю энергию, энтропию, напряжение и тепловой поток. Этот подход будет обсуждаться в гл. 4. На данном этапе мы предпочитаем значительно менее строгий подход, в котором используются понятия, взятые из классической термодинамики. При таком упрощенном подходе по-прежнему используютсячетыреуравнения, описывающие поведение рассматриваемых материалов термодинамическое уравнение состояния, которое представляет собой соотношение между плотностью, давлением и температурой реологическое уравнение состояния, связывающее внутренние напряжения с кинематическими переменными уравнение для теплового потока, связывающее тепловой поток с распределением температуры уравнение, связывающее внутреннюю энергию с существенными независимы-  [c.11]

Необходимо обсудить роль динамического уравнения по отношению как к а, так ъкр. Предположим, что поле скорости определено и известно реологическое уравнение состояния для данной жидкости. Если это реологическое уравнение принадлежит к тину уравнений с девиаторным тензором напряжений, то т вычисляется на основании известной кинематики и далее из динамического уравнения (уравнение (1-7.13)) определяется Vp. Следовательно, поле давлений вычисляется с точностью до произвольной аддитивной постоянной. Если же, как это бывает наиболее часто, реологическое уравнение состояния принадлежит к типу уравнений, содержащих недевиаторные избыточные напряжения, то тензор т определяется по вычисленному т из уравнения (1-8.4), а Vp — из уравнения (1-7.13), как и ранее.  [c.47]

Ньютоновское реологическое уравнение состояния получается как частный случай при = 1. Жидкости с псевдопластическим поведением соответствует п < 1, а с дилатантным поведением соответствует га > 1. Хотя уравнение (2-4.4) часто довольно точно описывает кривую вискозиметрической вязкости для реальных материалов в диапазоне изменения S от одного до нескольких порядков, оно неприменимо для предсказания верхнего и нижнего пределов вязкости. В частности, для псевдопластических жидкостей (п < 1) уравнение (2-4.4) предсказывает бесконечно большую вязкость в предельном случае исчезающе малых скоростей сдвига. Несмотря на эту трудность, расчеты течений, основанные на уравнении (2-4.4), успешно применялись в инженерном анализе различных задач теории ламинарных течений. В книге Скелланда [9] приведен обзор расчетов такого типа.  [c.68]

Любое реологическое уравнение состояния, записанное в терминах тензорных компонент в конвективной системе координат, автоматически удовлетворяет принципу объективности поведения материала [1, р. 46]. Из этого в литературе часто незаконно делают вывод, что такие уравнения, записанные в некоторой алгебраически простой форме, имеют некий особый физический смысл. Предположения о линейности , которые типичны для старых неинвариантных формулировок линейной вязкоупругости, были сделаны инвариантными относительно системы отсчета при помощи метода конвективных координат и, следовательно, предполагались физически реальными, хотя имеется бесчисленное количество других возможностей удовлетворить принципу объективности поведения материала, равно подтверждаемых (или не подтверждаемых) с феноменологической точки зрения. Смешение систем координат и систем отсчета оказывается даже более вопиющим в некоторых опубликованных работах, основанных на методе конвективных координат, а различие между тензорами (как линейными операторами, отображающими евклидово пространство само в себя) и матрицами тензорных компонент часто совершенно игнорируется. Наконец, конвективным производным часто приписывался некоторый особый физический смысл, и бесплодные дискуссии о том, что они являются истинными временными производными, были вызваны неправильным толкованием метода конвективных координат. В данном разделе мы собираемся осветить этот вопрос в соответствующей перспективе и указать некоторые распространенные ошибки, встречаюпщеся при применении данного метода.  [c.111]


Смотреть страницы где упоминается термин Реологические уравнения состояни : [c.14]    [c.47]    [c.56]    [c.57]    [c.58]    [c.62]    [c.66]    [c.70]    [c.76]    [c.80]    [c.90]    [c.256]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.23 ]



ПОИСК



Уравнение состояния

Уравнения реологические



© 2025 Mash-xxl.info Реклама на сайте