Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

265 — Уравнения с несколькими степенями свободы 271—281 — Влияние

В автономных системах действующие силы зависят только от состояния системы (обобщенных координат и обобщенных скоростей), и в дифференциальные уравнения движения время явно не входит. В дифференциальные уравнения движения неавтономных систем время входит явно. Если для автономной нелинейной системы с несколькими степенями свободы можно заранее указать с достаточной точностью законы изменения во времена некоторых из обобщенных координат, то число дифференциальных уравнений движения соответственно уменьшается в этих уравнениях явно появляется время, и систему в целом можно рассматривать как неавтономную. На этом основана постановка задачи о вынужденных колебаниях, когда предполагают, что движение колебательной системы не оказывает обратного влияния на возбудитель колебаний, т. е. действие возбудителя представляет собой некоторую заданную функцию времени ( идеальный возбудитель ). При учете обратного влияния система обычно оказывается нелинейной и автономной, а число обобщенных координат большим, чем в приближенном анализе, необходимость такого учета зависит от свойств и параметров системы (см. гл. VII).  [c.21]


Численное интегрирование полученной системы уравнений не представляет затруднений, тем более, что эта система распадается на две независимые системы, описывающие поперечные и продольные колебания упругой шарнирной цепи. Как видно из полученных уравнений, нелинейность существенным образом влияет на амплитуды и частоты поперечных колебаний, в то время как амплитуды продольных колебаний такого влияния не испытывают. Поэтому в дальнейшем уравнения, описывающие продольные колебания масс цепочки, могут быть проинтегрированы самостоятельно в линейной постановке. Затем, подставляя решение для в систему уравнений, описывающих поперечные колебания масс цепи, приходим к задаче о воздействии на нелинейную колебательную систему со многими степенями свободы возмущающей силы с несколькими частотами. Поскольку правые части (102) не зависят от р,, ф , то первое и третье уравнения этой системы удобны для исследования амплитуд М,-, NI-  [c.41]


Смотреть страницы где упоминается термин 265 — Уравнения с несколькими степенями свободы 271—281 — Влияние : [c.550]    [c.562]    [c.550]    [c.562]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.0 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.0 ]



ПОИСК



Степень свободы



© 2025 Mash-xxl.info Реклама на сайте