Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Области неустойчивост Влияние демпфировани

Влияние диссипации иа устойчивость параметрически возбуждаемых систем. Параметрические колебания системы с одной степенью свободы описываются уравнением (20). Согласно (22) области неустойчивости при 8 0 лежат внутри соответствующих областей уравнения (23), но могут быть смещены относительно областей неустойчивости уравнения (21). Наличие демпфирования делает невозможным параметрическое возбуждение при достаточно малых jx. При этом влияние демпфирования тем сильнее, чем выше порядок р побочного параметрического резонанса. Типичные области неустойчивости для уравнения Матье с демпфированием  [c.125]


Из полученных соотношений для передаточной матрицы видно, что в спектре колебаний помимо частот возмущений (Oj имеются частоты (oj 0д. Наличие переменных коэффициентов в уравнениях оказывает влияние и на резонансные свойства вибрации. При параметрическом резонансе колебания с возрастающей амплитудой имеют место в некоторых интервалах значений параметров системы, в то время как при обычном резонансе они наступают при определенных значениях параметров системы. Кроме того, амплитуды возрастающих колебаний при параметрическом резонансе изменяются по показательному закону, а при точечном резонансе — по степенному. Обычный резонанс наступает при совпадении частот возмущений с частотами собственных колебаний. Параметрический резонанс возможен, когда частоты изменения параметров 0 кратны собственным частотам системы. Границы главных областей неустойчивости определяются зависимостями, представленными в работе [П4]. Введение демпфирования сужает области параметрического резонанса.  [c.684]

Влияние демпфирования на области неустойчивости 363  [c.363]

ВЛИЯНИЕ ДЕМПФИРОВАНИЯ НА ГРАНИЦЫ ОБЛАСТЕЙ НЕУСТОЙЧИВОСТИ  [c.363]

Влияние демпфирования в общем случае. Если параметрические колебания описываются системой дифференциальных уравнений с периоди ческими коэффициентами, то расчет областей неустойчивости при наличии демпфирования усложняется. Некоторые приближенные методы указаны в книге [7]. Метод малого параметра дает для опреде.тения границ комбинационных областей следующую приближенную формулу [28]  [c.365]

Ширина области, а вместе с ней и ее практическое значение с ростом числа п уменьшаются. Это объясняется прежде всего влиянием демпфирования, которое хотя и не учитывается в данном случае, но всегда имеется у реальных осцилляторов. Учет демпфирования приводит к уменьшению области неустойчивости (см., например, Кл оттер [11, с. 368 и далее]).  [c.166]

В этой и других подобных задачах со сравнительно разреженным спектром взаимное влияние гасителей, настроенных на разные частоты, невелико. Это позволяет часто ограничиваться рассмотрением простейших расчетных моделей конструкций — в виде систем с одной степенью свободы. Применение ДГК при продольных колебаниях стержней снижает также возможность возникновения параметрического резонанса, так как вследствие увеличения демпфирования системы размеры областей динамической неустойчивости уменьшаются [44].  [c.162]

На рис. 3 и 4 приведены динамические свойства рассматриваемой модели спутника с двойным вращением при небольшом линейном демпфировании в системе корпуса и демпфировании при помощи кулонова трения (с областью застоя) в системе маховика. На этих рисунках не были учтены члены левой части неравенства (28), содержащие параметры С и С. Однако, когда имеет место значительное демпфирование или же колебательная цепь настроена на критическую частоту (г или г близка к единице), влияние параметров t V может быть заметным. Исследуя условие (28) более подробно в частном случае п = 2, п = , видим, что может существовать устойчивый предельный цикл при некотором значении yrjfa 0 и неустойчивый предельный цикл при некотором большем значении угла 0. Это означает, что кривые на рис. 4 могут пересекаться дважды, когда в системе маховика имеется заметное линейное (вязкое) демпфирование. Для этого частного случая подставим в левую часть неравенства (28) соответствующие выражения параметров р и р и учтем соотношение (27). Тогда условие устойчивости примет вид  [c.114]



Смотреть страницы где упоминается термин Области неустойчивост Влияние демпфировани : [c.254]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.363 , c.364 ]



ПОИСК



Влияние демпфирования на границы областей неустойчивости

Демпфирование

Неустойчивость

Области неустойчивост

Области неустойчивости

Область влияния

Ра неустойчивое



© 2025 Mash-xxl.info Реклама на сайте