Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

33 — Уравнения основные сред сплошных 16—19 —Скорости

Для характеристики скорости движения многофазной среды целесообразно ввести и другие фиктивные скорости, которые (как будет следовать из дальнейшего) позволят записать основные уравнения в виде, аналогичном виду уравнений газодинамики однофазной сплошной среды.  [c.45]

Обзор содержания. Классическая механика жидкости является одним из разделов механики сплошных сред и исходит, таким образом, из предположения, что жидкость по своей структуре практически непрерывна и однородна. Основное отличие жидкости от других сплошных сред заключается в том, что в положении равновесия касательные напряжения на границе раздела двух смежных частей жидкости должны равняться нулю. Само по себе это свойство не является достаточным для описания движения жидкости, хотя оно и положено в основу гидростатики и гидродинамики. Для того чтобы характеризовать физическое поведение некоторой жидкости, это свойство должно быть обобщено, представлено в надлежащей аналитической форме и учтено в уравнениях движения произвольной сплошной среды. При этом неизбежно получается система дифференциальных уравнений, которым должны удовлетворять скорость, давление, плотность и т. д. при произвольном движении жидкости. В данной статье мы будем рассматривать эти дифференциальные уравнения, их вывод из основных аксиом и различные формы, которые принимают эти уравнения при более или менее ограничительных предположениях, касающихся свойств жидкости или ее движения.  [c.5]


В работах [19, 20] 1997-2000 гг. авторами были получены общие уравнения движения сред, для которых зависимость между компонентами напряжения и компонентами скоростей деформации выражалась произведением некоторой функции, зависящей от интенсивности скоростей деформации, на соответствующую компоненту скорости деформации. При записи данной системы уравнений была взята за основу форма записи уравнений движения пластических сред М. Леви [54]. Предлагаемая система уравнений состоит из динамических уравнений движения сплошной среды уравнения неразрывности для несжимаемой среды основного реологического уравнения данной среды, записанного через компоненты напряжения и проекции скорости четырех независимых уравнений, вытекающих из условия пропорциональности касательных напряжений соответствующим скоростям деформации сдвига и разности нормальных напряжений соответствующей разности объемных скоростей деформации.  [c.13]

В данной главе рассматриваются базовые понятия механики сплошных сред. Даются уравнения для описания движения сплошных сред, полей скоростей, теории деформаций. Также рассматриваются классификация сплошных сред и формулировка основных задач, методы подобия и размерности.  [c.112]

Дифференциальное уравнение движения выражает собой основной закон динамики (второй закон Ньютона) применительно к движущейся сплошной среде. Идею вывода уравнения движения рассмотрим на элементарном примере движения жидкости между двумя параллельными плоскостями (рис. 12.2). Как и в случае уравнения энергии, ограничимся случаем несжимаемой жидкости (капельная жидкость или газ при умеренной скорости движения).  [c.272]

Традиционно принято рассматривать закономерности роста усталостных трещин в металлах на основе подходов механики сплошной среды. Моделирование роста трещины определяется основным кинетическим уравнением, в котором установлена связь между размахом коэффициента интенсивности напряжения и скоростью роста трещины в виде уравнения Париса [1]  [c.188]

Напряжения, скорости и плотность по обе стороны поверхности разрыва связаны между собой условиями, которые должны удовлетворять основным уравнениям механики сплошной среды и уравнениям состояния выбранной реологической модели. Основные уравнения механики сплошной среды лучше использовать в интегральном виде, так как для разрывных процессов интегральная формулировка физических законов по сравнению с дифференциальной обладает большей общностью. Для непрерывных же процессов интегральная и дифференциальная формулировки полностью эквивалентны [например, закон сохранения массы в интегральной форме (V.8) и дифференциальное уравнение неразрывности (V.10), закон сохранения импульса в интегральной форме (V.14) и дифференциальные уравнения движения (V.18)l. Используя закон сохранения массы (V.8) и закон сохранения импульса  [c.247]

Предметом механики сплошных сред как научной дисциплины является механическое движение различных твердых, жидких и газообразных тел под влиянием прилагаемых сил. Основной метод исследования состоит в замене реального тела некоторой моделью. Под словом модель в механике сплошной среды понимают систему уравнений, связывающих историю деформирования частицы тела с ее напряженным состоянием (в эту систему могут входить и даже быть определяющими немеханические величины, такие как температура, электромагнитные константы, химические потенциалы, плотность дислокаций и пр. в этом случае они управляются своими дополнительными кинетическими уравнениями ). Модель строится с тем расчетом, чтобы охватить главные черты определенного класса процессов (т. е. диапазон давлений, скоростей, усилий, температур и пр.) для некоторого класса реальных тел.  [c.277]


Отметим, что это приближение нулевого порядка точнее решения уравнений сплошной среды (даже если для уравнений сплошной среды использовать граничные условия со скольжением). В самом деле, даже в нулевом приближении 1) кинетические пограничные -слои суш ествуют вблизи стенок, 2) в основной части потока массовая скорость удовлетворяет уравнению количества движения Навье — Стокса, но соответствуюш ие граничные условия на стенке, полученные экстраполяцией, пе являются обычными условиями скольжения, а содержат в себе члены второго порядка  [c.189]

На рис. 2.18—2.20 штриховыми линиями показаны расчетные кривые ползучести, полученные по уравнениям (2.26) — (2.28) соответственно. Повторным испытанием (а—10 МПа при 1250° С, штрихпунктирные кривые) выявлено рассеяние экспериментальных данных (сплошные линии). После статистической обработки при этом режиме испытан контрольный (третий) образец кривая контрольного испытания расположена вблизи расчетной кривой (см. рис. 2.20, а). Относительная погрешность определения скорости ползучести в текущей точке кривой по уравнениям (2.26) — (2.28) составляет 35—45%. Эти уравнения отражают основные законо-мерности ползучести материала в исследованных условиях. При температурах 1100 и 1200° С в обеих средах имеет место упрочнение (в уравнениях (2.26) и (2.27) я= 0] при 1250 и 1300° С ползучесть протекает без упрочнения [в уравнении (2.28) п==0].  [c.47]

Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]

При рассмотрении сплошной среды вводятся понятия полей поля плотности, поля скоростей, напряжений и т. д. Эти поля должны удовлетворять основным законам сохранения, или уравнениям баланса массы, импульса, момента количества движения и энергии. Основные уравнения баланса выполняются в любой среде. Кроме того, имеются некоторые специальные соотношения, характеризующие конкретные свойства той или иной среды они устанавливают связь между механическими напряжениями и другими параметрами, определяют поток немеханической энергии, связывают друг с другом различные термодинамические перемен-  [c.13]

Главы I и II содержат основные уравнения механики сплошной среды и основные законы пластичности. Введены понятия о тензорах и девиаторах напряжения, деформации и скорости деформации, а затем сформулированы их основные свойства.  [c.3]

Эти уравнения, связывающие компоненты V, вектора скорости и тензора напряжений являются основной системой дифференциальных уравнений движения для любой сплошной среды, представляющих собой уравнение баланса количества движения (импульса) для бесконечно малого объёма среды.  [c.35]

Плотность массы, скорость движения и закон сохранения массы простой системы. Изложенный статистический подход к описанию движения системы при некоторых существенных дополнительных определениях и условиях в принципе позволяет получить из уравнения Лиувилля важные для МСС законы неравновесного и неоднородного в пространстве движения системы 5 как сплошной среды. Среди них наименее ограничительным является вывод закона сохранения массы, который и приводится ниже для простой системы. Некоторые основные термодинамические соотношения для равновесных систем будут даны в 3.  [c.26]

Некоторые виды турбулентных струйных течений являются лишь условно автомодельными. Это — плоские осесимметричные следы, удаленные от обтекаемых тел на такое расстояние, при котором дефицит скорости мал по сравнению со скоростью невозмущенного потока. Сложные течения струй за соплами конечных размеров можно рассматривать как автомодельные при соответствующих масштабах длин, скоростей и субстанций и принятия тех или иных допущений. Основные положения механики сплошных сред в данном случае предусматривают формулирование уравнений сохранения массы, импульса, субстанций или энергии со своими граничными условиями.  [c.221]

В данной книге предпринята попытка по с л е д овате льного изложения основ термомеханики и путей построения математических моделей процессов в конструкционных материалах и технических устройствах. При написании книги использован материал курсов, которые читают авторы в Московском государственном техническом университете им. Н.Э. Баумана. Основной особенностью изложенного в книге подхода является введение в математиче ские модели рассматриваемых сред внутренних параметров состояния. Это позволяет связать макроскопическое поведение сплошной среды с процессами, протекающими на микроуровне, и расширяет возможности построения адекватных математических моделей достаточно сложных и существенно не стационарных термомеханических процессов. При таком подходе наряду с законами сохранения массы, количества движения и энергии используются соотношения термодинамики необратимых процессов, которые устанавливают структуру уравнений, включающих внутренние параметры состояния среды и скорости их изменения во времени.  [c.5]


V В области математической теории пластичности к наиболее анним (семидесятые годы прошлого столетия, работы Треска и Сен-Венаиа) относится первая теория так называемой динамической школы пластичности, рассматривавшая задачу пластичности, как задачу механики сплошных сред и ограничивавшаяся случаем плоской деформации. Система основных уравнений этой теории состоит из пяти дифференциальных уравнений в частных производных с пятью неизвестными функциями (тремя составляющими напряженного состояния материального элемента пластически деформируемого тела и двумя проекциями на координатные оси вектора скорости) от трех независимых аргументов (двух координат материального элемента и времени). Такими уравнениями являются два основных уравнения динамики сплошных сред и три дополнительных уравнения, вытекающих из принятых в данной теории допущений — условия постоянства объема деформируемого элемента, условия совпадения плоскости наибольшей скорости скольжения с плоскостью наибольшего скалывающего напряжения и условия постоянства величины наибольшего скалывающего напряжения по всему объему деформируемого тела.  [c.17]

При изучении механики сплошных сред задача состоит в исследовании движения сплошной среды под действием заданных сил. Таким образом, в уравнениях (3.3.5) компоненты массовой силы Р рассматриваются как величины заданные. Остальные величины, а именно плотность р, компоненты напряжения р у , Руу] р /, р у, Рухч Рхх и компоненты ускорения а , ау, (либо компоненты векторов скорости или смещения, через которые а выражается), являются величинами, подлежащими определению. Уравнения (3.3.5) представляют систему трех уравнений относительно 10 неизвестных. Следовательно, уравнения (3.3.5 ) являются, как очевидно, уравнениями необходимыми, но недостаточными. Недостающие уравнения для описания движения сплошных сред принципиально не могут быть найдены методами классической механики. Их можно получить, только рассматривая основные физические характеристики тех или иных сплошных сред и строя на основании их гипотезы  [c.41]

Видимо, поэтому в основных курсах гидродинамики предпочтение отдается феноменологическому выводу уравнений Навье — Стокса. Последний имеет простую логическую структуру и опирается главным образом на две аксиомы о короткодействии внутренних сил, которые, следовательно, сводятся к силам поверхностным, и о тензорном законе вязкого трения, обобщающем закон Ньютона. При этом лине11пая связь между касательными напряжениями и скоростями деформаций может рассматриваться как имеющая источник в термодинамике необратимых процессов. В такой постановке, по сути дела, отсутствует модельный элемент, за исключением того, что жидкость есть подвижная сплошная среда, в которой касательные напряжения возникают лишь при наличии скоростей деформаций, т. е. течения.  [c.6]

В механике сплошной среды тело представляют в виде некоторой субстанции, называемой материальным континуумом, непрерывно заполняющей объем геометрического пространства. Бесконечно малый объем тела также называется частицей. Феноменологически вводятся пoняtия плотности, перемещения и скорости, внутренней энергии, температуры, энтропии и потока тепла как непрерывно дифференцируемых функций координат и времени. Вводятся фундаментальные понятия внутренних напряжений и деформаций и постулируется существование связи между ними и температурой, отражающей в конечном счете статистику движения и взаимодействия атомов. Б МСС используются основные уравнения динамики системы и статистической механики, в первую очередь законы сохранения массы, импульса, энергии и баланса энтропии. Обоснование этого и установление соответствия  [c.7]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]

При обработке результатов экспериментов важное значение имеет выбор модели сплошной среды. Используя различные соотношения между девиатором тензора напряжений и девиатором тензора скоростей деформацш , получим разные уравнения, описывающие движение. С механической гочки зрения все модели, удовлетворяющие основным термодинамическим ограничениям, допустимы для описания течений и поэтому естественно вы делить те из них, которые, по возможности, наиболее просты и отражают основные характерные свойства материала. Возникает естественный вопрос, как оценить различие между решениями задач, соответствующих разным математическим моделям, если они получены, как ацпроксимации одного и того же экспериментального материала  [c.79]

Большинство основных уравнений механики сплошной среды отражает основные законы физики (совместность, сохранение массы, баланс количества движения, момента количества движения и энергии и т. д.). Эти соотношения применимы к любому виду материала, но может оказаться удобным использовать эти соотношения в различных (быть может, и эквивалентных) формах при применении их, например, для жидкостей и твердых тел. Различие между типами сплошных сред математически выражается главным образом в так называемых определяющих уравнениях. Эти уравнения описывают специфические свойства (и де-ализированных) материалов с помощью некоторого соотношения между кинематическими переменными (деформация, скорость деформации и т. д.) и переменными  [c.7]

С середины XVIII в. развернулись теоретические исследования но изучению движения жидкости, положившие начало теоретической гидродинамике. Честь ее создания принадлежит Российской Академии наук в лице Леонарда Эйлера и Даниила Бернулли. В труде Обш,ие принципы движения жидкостей Л. Эйлер впервые вывел основные дифференциальные уравнения движения так называемой идеальной жидкости , положив начало важнейшей отрасли механики сплошной среды - гидроаэродинамике. Л. Эйлеру гидроаэродинамика обязана, в частности, введением понятия давления. Д. Бернулли принадлежит открытие фундаментального закона гидродинамики, устанавливающего связь между давлением и скоростью в потоке несжимаемой жидкости, обобщенного ныне для случая сжимаемой жидкости.  [c.7]



Смотреть страницы где упоминается термин 33 — Уравнения основные сред сплошных 16—19 —Скорости : [c.76]    [c.180]    [c.107]    [c.19]    [c.131]    [c.68]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.20 , c.21 ]



ПОИСК



33 — Уравнения основные и скорость

Поле скоростей и его основные характеристиНеобходимые уравнения движения сплошных сред

Скорость основной

Среда сплошная

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте