Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энтропяи волны

Одновременно со сжатием вещества и повышением его давления растет и энтропия волна распространяется по невозмущенному газу со сверхзвуковой скоростью, а по сжатому газу за нею — с дозвуковой. Этот режим схематически изображен на рис. 1.32, а.  [c.58]

Энтропия за ударной волной не убывает в том случае, если угол наклона ударной волны а не меньше угла наклона характеристики первого семейства набегающего потока. Иными словами, должно выполняться неравенство  [c.53]

Выясним, не являются ли рещения без ударных волн в некоторой области изменения переменных наилучшими в той смысле, что допустимыми изменениями энтропии на экстремали нельзя уменьшить сопротивление.  [c.93]


С равенством (6.17) связано известное свойство ударных волн увеличение угла наклона ударной волны а приводит к увеличению энтропии газа за ударной волной. Таким образом, функция (р увеличивается вместе с а. Отсюда видно, что вариация i t > О допустима только тогда, когда ) < Из сказанного ранее заключаем, что величина х не может быть уменьшена за счет увеличения а только при условии

[c.153]

Наряду с другими термодинамическими величинами в ударной волне испытывает разрыв также и энтропия. В силу закона возрастания энтропии последняя для газа может лишь возрастать при его движении. Поэтому энтропия S2 газа, прошедшего через ударную волну, должна быть больше его начальной энтропии Sb  [c.459]

Подчеркнем здесь следующее обстоятельство. Наличие ударных волн приводит к возрастанию энтропии при таких движениях, которые можно рассматривать во всем пространстве как движение идеальной жидкости, не обладающей вязкостью и теплопроводностью. Возрастание энтропии означает необратимость движения, т. е. наличие диссипации энергии. Таким образом, разрывы представляют собой механизм, который приводит к диссипации энергии при движении идеальной жидкости. В связи с этим для движения тел в идеальной жидкости, сопровождающегося возникновением ударных волн, не имеет места парадокс Даламбера ( 11)—при таком движении тело испытывает силу сопротивления.  [c.459]

Разумеется, истинный механизм возрастания энтропии в ударных волнах заключен в диссипативных процессах, происходящих в тех весьма тонких слоях вещества, которые в действительности представляют собой физические ударные волны (см. 93). Замечательно, однако, что величина этой диссипации целиком определяется одними лишь законами сохранения массы, энергии и импульса, примененными к обеим сторонам этих слоев их ширина устанавливается как раз такой, чтобы дать требуемое этими законами сохранения увеличение энтропии.  [c.459]

Возрастание энтропии в ударной волне оказывает еще и другое существенное влияние на движение если движение газа впереди ударной волны потенциально, то за ней оно, вообще говоря, становится вихревым мы вернемся к этому обстоятельству в 114.  [c.459]

Таким образом, скачок энтропии в ударной волне слабой интенсивности является малой величиной третьего порядка по сравнению со скачком давления.  [c.460]

Таким образом, в предположении положительности производной (86,2) для ударных волн слабой интенсивности можно весьма просто показать, что условие возрастания энтропии с необходимостью приводит также и к неравенствам  [c.463]

Рассмотрим возмущение ударной волны, представляющее собой ее бесконечно малое смещение в направлении, перпендикулярном ее плоскости ). Оно сопровождается бесконечно малым возмущением также и других величин — давления, скорости и т. д. газа по обеим сторонам поверхности разрыва. Эти возмущения, возникнув вблизи волны, будут затем распространяться от нее, переносясь (относительно газа) со скоростью звука это не относится лишь к возмущению энтропии, которое будет переноситься только с самим газом. Таким образом, произвольное возмущение данного типа можно рассматривать как совокупность звуковых возмущений, распространяющихся в газах I и 2 по обе стороны ударной волны, и возмущения энтропии последнее, перемещаясь вместе с газом, будет, очевидно, существо-  [c.467]


В энтропийно-вихревой волне kva = ш, т. е. kx = lv2 ( 2— невозмущенная скорость газа за разрывом). В этой волне возмущение давления отсутствует, возмущение удельного объема связано с возмущением энтропии, = (5K/5s)p6s, а возму-  [c.472]

Отсюда видно, что энтропия меняется не монотонно, а имеет максимум внутри ударной волны (при x = 0). При л- = оо эта формула дает одинаковые значения s = Si это связано с тем, что полное изменение энтропии S2 — si являегся величиной третьего порядка по Р2 — Р (ср. (86,1)), в то время как s — Si — второго.  [c.493]

Простое вычисление с помощью разложения в ряд показывает, что оба написанных выражения отличаются друг от друга только в членах третьего порядка (при вычислении следует иметь в виду, то изменение энтропии в разрыве есть величина третьего порядка малости, а в простой волне энтропия вообще постоянна). Отсюда следует, что с точностью до членов второго порядка звуковая волна с каждой стороны от образовавшегося в ней разрыва остается простой, причем на самом разрыве будет выполнено надлежащее граничное условие. В следующих же приближениях это уже не будет и.меть места, что связано с появлением отраженных от поверхности разрыва волн.  [c.536]

ЧТО И особенность на слабом разрыве). Кроме того, изменение энтропии в ударной волне должно привести к возникновению позади нее еще и слабого тангенциального разрыва, на котором испытывают скачок производные энтропии.  [c.584]

Другой важный случай, когда потенциальность течения можно считать не нарушающейся ударными волнами,— это случай волн малой интенсивности. Мы видели ( 86), что в таких ударных волнах скачок энтропии есть величина третьего порядка по сравнению со скачком давления или скорости. Из соотношения  [c.598]

Возникающие при таком обтекании ударные волны наклонены к направлению движения под малым углом — порядка величины отношения 0 = Ь/1 толщины тела к его длине. Эти волны, вообще говоря, искривлены и в то же время обладают большой интенсивностью — хотя скачок скорости на них относительно мал, но скачок давления (а с ним и энтропии) велик. Поэтому течение газа в общем случае отнюдь не является потенциальным.  [c.657]

Релятивистские ударные волны слабой интенсивности могут быть рассмотрены вполне аналогично тому, как это было сделано в 86 в нерелятивистском случае [И. М. Халатников, 1954). Не повторяя заново всех вычислений, приведем результат для скачка энтропии, который снова оказывается малой величиной третьего порядка по сравнению со скачком давления  [c.701]

Применим уравнения гидродинамики гелия II к распространению звука в этой жидкости. Как обычно, в звуковой волне скорости движения предполагаются малыми, а плотность, давление, энтропия — почти равными своим постоянным равновесным значениям. Тогда систему гидродинамических уравнений можно линеаризовать — в (139,12—14) пренебрегаем квадра-  [c.722]

Наконец, в неподвижной жидкости малые колебания температуры (и энтропии) распространяются, как столь же сильно затухающие волны с законом дисперсии  [c.219]

Действительно, временные изменения оптических неоднородностей, вызванных флуктуациями энтропии или температуры (см. (160.2)), подчиняются уравнению температуропроводности, решение которого в данном случае дает экспоненциальную зависимость от времени. Следовательно, в этом случае функция, модулирующая амплитуду световой волны, экспоненциально зависит от времени, и в рассеянном свете возникнет спектральная линия с максимумом на частоте первоначального света — центральная компонента — с полушириной  [c.595]

Рри-t давление в волне разрежения АТ - разность температур газа при его сжатии в ударной волне и расширении в волне разрежения S -- энтропия, Т - температура  [c.176]

Вывод о затухании плазменных волн получен из обратимого по времени кинетического уравнения Власова. Это затухание не сопровождается ростом энтропии, представляя собой термодинамически обратимый процесс. Оно может быть установлено непосредственно из уравнений механики.  [c.134]

Уравнения газовой динамики необходимо дополнить условием неубывания энтропии в частице, выражающим второе начало термодинамики. Это условие приводит к тому, что в потоке газа могут существовать ударные волны т.е. такие линии разрыва функций w, i , р, р, которые приводят к увеличению энтропии и плотности газа, но не существуют линии разрыва, за которыми энтропия и плотность потока уменьщаются.  [c.51]

Изэнтропические разрьты. Энтропия газа 3 при прохождении через ударную волну увеличивается, вместе с ней увеличивается и величина <р. В дальнейшем появится необходимость построения разрывных течений с постоянной энтропией. Такого вида разрывы могут быть получены только в отдельных точках потока фокусировкой характеристик, начинающихся выше по потоку (рис. 3.3). Области течений с непрерывным сжатием, содержащие фокусирующиеся характеристики, иногда называют волнами сжатия.  [c.54]

Выпишем систему гидродинамических уравнений для рассматриваемого движения. Будем отмечать значения величин в состоянии механического равновесия индексом нуль, а малые отклонения от этих значений в волне — штрихом. Тогда уравнение сохранения энтропии s = sq + s напишется с точностью до величин первого порядка малости в виде  [c.63]


Производные берутся при постоянной энтропии, поскольку звуковая волна адиабатична. В силу термодинамического соотно-  [c.356]

Наличие вязкости и теплопроводности приводит к диссипации энергии звуковых волн, в связи с чем звук поглощается, т. е. его интенсивность постепенно уменьшается. Для вычисления дис-сипируемой в единицу времени энергии Ёыек воспользуемся следующими общими соображениями. Механическая энергия представляет собой не что иное, как максимальную работу, которую можно получить при переходе из данного неравновесного состояния в состояние термодинамического равновесия. Как известно из термодинамики, максимальная работа совершается, если переход происходит обратимым образом (т. е. без изменения энтропии), и равна соответственно этому  [c.422]

Решение. При наличии большой теплопроводности движение в звуковой волне не адиабатично. Поэтому вместо условия постоянства энтропии имеем теперь уравнение  [c.428]

Вопрос о судьбе гофрировочно-неустойчивых ударных волн тесно связан со следующим замечательным обстоятельством при выполнении условий (90,12) или (90,13) решение п дродинами-ческих уравнений оказывается неоднозначным (С. 5. Gardner, 1963). Для двух состояний среды, I w 2, связа иых друг с другом соотношениями (85,1—3), ударная волна является обычно единственным решением задачи (одномерной) о течении, переводящем среду из состояния I ъ 2. Оказывается, что если в состоянии 2 выполнены условия (90,12) или (90,13), то решение указанной гидродинамической задачи не однозначно переход из состояния 1 в 2 может быть осуществлен не только в ударной волне, но и через более сложную систему волн. Это второе решение (его можно назвать распадным) состоит из ударной волны меньшей интенсивности, следующего за ней контактного разрыва и из изэнтропической нестационарной волны разрежения (см. ниже 99), распространяющейся (относительно газа позади ударной волны) в противоположном направлении в ударной волне энтропия увеличивается от si до некоторого значения S3 < S2, а дальнейшее увеличение от ss до заданного S2 происходит скачком в контактном разрыве (эта картина относится к типу, изображенному ниже на рис. 78, б предполагается выполненным неравенство (86,2)) ).  [c.478]

Потенциальный поток перед ударной волной изэнтропичеп. В общем случае произвольной ударной волны с переменным вдоль ее поверхности скачком энтропии в пространстпо за вол-  [c.597]

Поскольку на бесконечности имеется однородный поток, в котором все величины, в частности и энтропия s, постоянны, а при стационарном движении идеальной жидкости энтропия сохраняется вдоль линий тока, то ясно, что и во всем пространстве будет S = onst, если только в газе нет ударных волн, что и предполагается ниже.  [c.601]

В ударной волне, возникающей при обтекании вогнутого профиля, мы имеем пример волны, начинающейся от некоторой точки, расположенной в самом потоке вдали от твердых стенок. Такая точка начала ударной волны обладает некоторыми общими свойствами, которые мы здесь отметим. В самой точке начала интенсивность ударной волны обращается в нуль, а вблизи нее мала. Но в ударной волне слабой интенсивности скачок энтропии и ротора скорости — величины третьего порядка малости, и потому изменение течения при прохождении через волну отличается от непрерывного потенциального нзэнтропического изменения лишь в величинах третьего порядка. Отсюда следует, что в отходящих от точки начала ударной волны слабых разрывах должны испытывать скачок лишь производные третьего порядка от различных величин. Таких разрывов будет, вообще говоря, два слабый разрыв, совпадающий с характеристикой, и тангенциальный слабый разрыв, совпадающий с линией тока (см. конец 96).  [c.606]

Это утверждение имеет общий характер и не связано с предполагаемой в (122,1—2) полнтропностью газа (и даже с его термодинамической идеальностью). Действительно, при наличии ударной волны энтропия газа в точке О So > S), между тем как в ее отсутствие энтропия была бы равна Si. Тепловая же функция в обоих случаях равна гг/,, = м,-f ц,/2, так как при пересечении линией тока прямого скачка уплотнения величина w а /2 не меняется. Но из термодинамического тождества dw — Т ds - dplp следует, что производная  [c.640]

Чтобы придать формуле (107) реальное физическое содержание, Планк вводит гипотезу естественного излучения, аналогичную гипотезе молекулярного хаоса. Ее суть в том, что отдельные волны, из которых со(лоит электромагнитное излучение, полностью не когерентны, или, что то же самое, отдельные излучатели непосредственно не взаимодействуют между собой. Мерой энтропии построенной Tai HM образом системы будет, следуя Больцману, число всевозмо сных электромагнитно различных размещений энергии между излучателями. Для того чтобы число таких размещений oкaзaJЮ ь конечным, Планк вынужден был предположить, что полная энергия системы складывается из конечного числа элементарных порций энергии Мы рассмотрим, и в этом состоит самый важный момент всего расчета, что Е может быть разделена на совершенно определенное число конечных равных частей, и введем при этом универсальную постоянную А=6,55 10 эрг-с. Эта постоянная, умноженная на частоту резонаторов v, дает элемент энергии е в эргах, и при делении на е мы получим число элементов энергии, которые  [c.155]

В Лейдене, Кембридже, Оксфорде и в США производились измерения теплопроводпости сверхпроводников (как в нормальном, так и сверхпроводящем состояниях). Эти измерения могут быть качественно интерпретированы с точки зрения двухжидкостной модели сверхпроводимости, в которой предполагается, что сверхтекучие электроны не несут энтропии и не взаимодействуют с решеточными волнами. Так, в сверхпроводящем состоянии электронная часть теплопроводности уменьшается, а решеточная возрастает. В промежуточном состоянии наблюдается добавочное рассеяние границами сверхпроводящей и нормальной фаз как элel тpoнoв так и решеточных волн. Вследствие отсутствия теории сверхпроводимости нельзя сделать каких-либо количественных выводов по этому поводу, а также объяснить некоторые наблюдающиеся на опыте особенности.  [c.225]

Наиболее далеко идущим прогнозом, следующим из модели Тисса, явилось предсказание существования тепловых волн в жидкости—явления, ставшего впоследствии известным под названием второго звука . Формальное рассмотрение двух взаимопроникающих жидкостей, обладающих разной энтропией, приводит к волновому уравнению для неоднородностей температуры вместо диссипативного уравнения теплопроводности. Тисса предположил поэтому, что нарушения равновесной концентрации двух жидкостей будут выравниваться посредством волнового движения, а но посредством диффузии. Это волновое движение, как и следовало ожидать, будет несколько похоже на акустический звук с той существенной разницей,, что при этом не будет происходить заметных колебаний плотности жидкости. Вместо них будут наблюдаться колебания относительной плотности двух жидкостей, т. е. колебание температуры. С этой точки зрения подходящим параметром для характеристики диссипации тепловых импульсов в Не II является не теплопроводность вещества, а скорость распространения в нем тепловых волн. На основании своей модели Тисса предположил, что эта скорость будет возрастать от нуля в Х-точке до максимума примерно при 1,5" К и затем уменьшаться при дальнейшем нонижении температуры.  [c.803]


Из сравнения равенств (5) и (6) видно, что скорость распространения сильной волны сжатия всегда выше скорости звука. Обычно распространение звука сопровождается столь незначительным изменением состояния газа, что энтропию можно считать практически постоянной, т. е. полагать, что при этом имеет место идеальный адиабатический процесс p/p = onst. Но в этом случае  [c.117]


Смотреть страницы где упоминается термин Энтропяи волны : [c.55]    [c.104]    [c.169]    [c.259]    [c.450]    [c.468]    [c.509]    [c.584]    [c.598]    [c.702]    [c.807]    [c.235]    [c.300]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.488 ]



ПОИСК



Замечания о принципиальной возможности измерения энтропии в ударной волне по свечению при разгрузке

Устойчивость процесса в проточных трактах с волнами энтропии

Энтропия

Энтропия ударную волну



© 2025 Mash-xxl.info Реклама на сайте