Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача двух тел плоская кругова

ИЗ двух конечных тел к массе всей системы). Поиск семейств периодических орбит выполняется при данном значении ц,. Теоретически, для того чтобы доказать существование периодических орбит в ограниченной задаче, можно провести исследование при ,1 = О, а затем аналитически продолжить полученные результаты в область положительных ц. Такой подход, примененный впервые Пуанкаре, использовался и многими другими исследователями. Пуанкаре в своей работе, основанной на методе аналитического продолжения, разделил периодические орбиты ограниченной задачи на три класса. Орбиты первого класса рождаются из круговых орбит задачи двух тел (е = О, t = 0), орбиты второго класса рождаются из эллиптических орбит задачи двух тел (е О, t = = 0). Периодические орбиты третьего класса также рождаются из орбит задачи двух тел, но при отличном от нуля наклонении орбиты бесконечно малой частицы к плоскости движения основных тел е = 0, i фО). Другими словами, первые два класса орбит относятся к плоской ограниченной круговой задаче, а третий класс относится к пространственной ограниченной круговой задаче.  [c.161]


Пример 1 (Ограниченная задача ТРЕХ ТЕЛ (см. п. 124)). Пусть точка Р малой массы движется под действием притяжения двух точек S и J конечных масс, не оказывая влияния на движение последних. Будем считать, что точка J движется относительно точки S по круговой орбите, а точка Р движется в плоскости этой орбиты (т. е. рассматривается так на- Р с. 138 зываемая плоская круговая ограниченная задача трех тел).  [c.325]

В ближайших двух параграфах мы сделаем некоторые выводы из уравнения (7.3.8) для ограниченной плоской круговой задачи трех тел. Для простоты будем полагать, что нами выбрана каноническая система единиц, так что  [c.244]

Отметим существенное отличие в поведении условно-периодических решений в окрестности 4 и .5. В плоском случае любая точка из достаточно малой окрестности L и 5 при всех значениях ц, удовлетворяющих условию 27ц(1 —ц)< 1, кроме двух ([X = Ц1, [Х = Х2), порождает условно-периодическое решение. Другими словами, точки 4 и в устойчивы в смысле Ляпунова. В пространственной задаче большинство точек (но не все) из достаточно малой окрестности точек либрации порождают условно-периодические решения. Неясно, имеют ли условно-периодический характер решения, порождаемые точками, принадлежащими множеству малой (в смысле Лебега) меры, поэтому говорить об устойчивости по Ляпунову (или о неустойчивости) треугольных точек либрации в пространственной ограниченной круговой задаче трех тел преждевременно.  [c.845]

В ограниченной задаче движение двух тел с конечными массами Ш], и ГП2 относительно их барицентра считают известным, требуется определить движение тела с бесконечно малой массой тпъ. Для определенности будем полагать, что тъ Ш2<-гп. Если тела гп ж М2 с конечными массами движутся относительно своего барицентра по круговым орбитам, то имеет место круговая ограниченная задача трех тел. Эта задача может быть плоской, если все три тела движутся в инерциальном пространстве в одной плоскости. Таково, например, движение КА в плоскости эклиптики под воздействием Солнца и Земли, Пространственная задача возникает в том случае, когда плоскость движения тела бесконечно малой массы тъ не совпадает с плоскостью движения тел Ш], и М2. Примером пространственной круговой ограниченной задачи трех тел может служить движение КА под воздействием Земли и Луны при условии, что плоскость его движения не совпадает с плоскостью орбиты Луны (эта орбита предполагается круговой).  [c.208]

В этой главе мы проведем исследование устойчивости треугольных точек либрации для случая плоской эллиптической ограниченной задачи трех тел. По сравнению со случаем круговой задачи, рассмотренной в двух предыдущих главах, здесь задача очень усложняется, так как независимая переменная явно содержится в гамильтониане возмущенного движения.  [c.147]

Таким образом, общая задача трех тел, описываемая девятью дифференциальными уравнениями второго порядка, сводится к трем дифференциальным уравнениям второго порядка, т. е. порядок системы понижается от 18 до 6. Если задачу ограничить еще больше, потребовав, чтобы третье тело двигалось в плоскости орбит двух массивных тел, то останется только два уравнения второго порядка, так что система будет иметь четвертый порядок. Такой частный случай называется плоской ограниченной круговой задачей трех тел. Из приведенных выше рассуждений становится понятным, почему пространственной и плоской ограниченной круговой задаче трех тел было посвящено большое число аналитических и численных исследований, хотя при такой постановке задачи мы волей-неволей лишаем себя воз.можности использовать десять известных интегралов движения. Однако при этом можно найти новый интеграл (впервые полученный Якоби), который будет полезен при исследовании поведения малой частицы.  [c.146]


Выводы. Разработан метод расчета обтекания плоских контуров и осесимметричных тел потоком газа при очень больших сверхзвуковых скоростях, основанный на разложении решения в ряд по степеням параметра е = (7 — 1)/(7 -h 1), где 7 — отношение теплоемкостей. Приведены формулы для вычисления первых двух членов этого ряда. В качестве примера решена задача об обтекании конического тела с протоком. Сравнение с точным решением для случая обтекания кругового конуса показывает, что при 7 = 1.4 погрешность в величине давления на конусе не превышает 1 % при полууглах при вершине конуса до 40 %.  [c.35]

Рассмотрим теперь случай плоского напряженного состояния несжимаемого материала. Для задачи о всестороннем нагружении пластины 2) с круговым отверстием, изготовленной из материала Бартенева-Хазановича, известно точное решение, которое приведено в приложении I. В отличие от плоской деформации, при плоском напряженном состоянии предварительное всестороннее нагружение пластины из несжимаемого материала силами, действующими в ее плоскости, вызывает ее деформацию. Поэтому результаты решения задачи об образовании отверстия в предварительно нагруженном теле и задачи о нагружении тела с уже имеющимся отверстием будут различны. Коэффициенты концентрации напряжений для этих двух задач будут совпадать (это можно объяснить тем, что отверстие сохраняет после деформации круговую форму), но отношение радиуса отверстия в конечном состоянии к радиусу в момент образования для этих задач будет неодинаковым.  [c.155]

Отметим, что в [50] также рассматривается плоская контактная задача для круговой лунки, т.е. тела, образованного пересечением двух окружностей (преобразование инверсии клина на плоскости). Используются биполярные координаты. Как и для плоского упругого клина, здесь удается получить точную функцию Грина [30] для последующего решения контактной задачи. Однако для этого после применения комплексного интегрального преобразования Фурье приходится решать функциональное уравнение со сдвигом. Для решения интегрального уравнения контактной задачи применяется асимптотический метод, эффективный для относительно удаленной от угловых точек области контакта. Приводятся численные результаты.  [c.194]

Выражение (4.35) выведено для осесимметричного трехмерного случая. Однако оно справедливо и для неосесимметричного рассеяния (при этом коэффициенты будут зависеть от двух индексов) и для двумерной задачи. В последнем случае падающая плоская волна и рассеянное поле вне поверхности в виде кругового цилиндра, описывающего тело, могут записаны в виде  [c.194]

Упругие деформации сжатия двумерных контактирующих тел нельзя вычислить только через контактные напряжения, определяемые теорией Герца. Необходимо учитывать также форму и размеры самих тел, а также способы их закрепления. В больщинстве практических ситуаций такие вычисления трудно -осуществить, что привело к множеству приближенных формул для расчета упругих деформаций сжатия тел при контакте в условиях плоской задачи, как, например, в случае зубьев шестерен или подшипников качения [164, 309]. Между тем сжатие длинного кругового цилиндра, контактирующего с двумя другими поверхностями несогласованной с ним формы вдоль двух диаметрально противоположных образующих, может быть проанализировано достаточно удовлетворительно.  [c.150]

При ц = О планетный вариант неограниченной задачи трех тел вырождается в две задачи двух тел (одна задача двух тел с массами то п ту = О, вторая задача двух тел с массами то и тг = 0). Очевидно, что среди возможных движений в вырожденной задаче имеются кеплеровские эллипсы, описываемые нулевыми массами т, = тг = 0. Пусть, в частности, кеплеровские орбиты суть компланарные окружности. Пуанкаре доказал [2], что при 11фО в плоской неограниченной задаче трех тел существуют периодические решения, близкие к круговым. Точнее, взаимные расстояния между тремя телами будут периодическими функциями времени, а чтобы координаты каждого тела были периодическими функциями времени, необходимо рассматривать равномерно вращающуюся (с конечной угловой скоростью) систему координат. В неподвижной системе координат координаты трех тел не будут, вообще говоря, периодическими функциями времени. Если ввести для таких периодических решений оскулирующий кинематический параметр — эксцентриситет, то он имеет порядок величины ц. Эти плоские перподиче-ские решения задачи трех тел были названы Пуанкаре решениями первого сорта, и они образуют четырехпараметрическое семейство решений. Пуанкаре показывает, что все множество периодических решений не богаче, чем однократное бесконечное множество периодических решений, так как одни семейства решений переходят в другие с помощью элементарных преобразований. Заметим также, что решение Хилла является частным случаем периодических решений первого сорта Пуанкаре.  [c.792]

Полагая в уравнениях (17), (18) z ri О, получим дифференциальные уравнения движения спутника в ограниченной плоской круговой задаче трех тел. Так как при г О третье из уравнений (18) превращается в тождество 0 = 0, то рассматриваемая плоская задача описывается системой диффере1щиальпых уравнений четвертого порядка относительно двух вещественных ( зуикций х (/) и у (/).  [c.234]


Обычно расчет на контактную прочность колес рассматриваемого типа проводится по аналогии с расчетом прямозубых конических колес. Однако расчет на контактную прочность конических колес с прямыми зубьями ведется на основе решения плоской контактной задачи для случая касания поверхностей двух цилиндров. Но поверхности сопряженных круговых зубьев имеют кривизну в двух направлениях (кривизна октоидального профиля зуба и кривизна вдоль зуба), и поэтому расчет таких зубьев на контактную прочность необходимо проводить как решение пространственной контактной задачи, для случая начального касания двух тел в точке.  [c.148]

В математическом плане задачи теории упругости для тел с разрезами родственны контактным задачам. В некоторых случаях существует прямая аналогия, которая позволяет при помощи известного решения контактной задачи сразу построить решение соответствующей задачи для тела с разрезом, и наоборот. Например, классическая задача о давлении гладкого штампа с плоским основанием произвольной формы в плане на границу полупространства с точностью до знака совпадает с задачей о растяжении и изгибе бесконечного упругого пространства с плоской щелью, занимающей внешность площадки контакта (естественно, в той же плоскости). Так," задача о давлении торца жесткого гладкого кругового цнлиидра на полупространстве аналогична задаче для пространства с плоским разрезом, расположенным вне кругового диска. Другие примеры прямой математической аналогии этих двух классов задач читатель легко составит самостоятельно.  [c.261]

Работа [127] полностью исчерпала проблему устойчивости треугольных лагранжевых решений в плоской ограниченной круговой задаче трех тел. Б [128] А. П. Маркеев исследовал устойчивость треугольных равновесных решений в пространственной ограниченной круговой задаче трех тел. Им доказано, что для большинства начальных условий (в смысле меры Лебега) при всех значениях ц, удовлетворяющих условию (10.3.40), кроме двух значений, ц = Х], ц = хг из совокупности (10.3.43), треугольные точки либрации устойчивы. При ц = [Х1 и ц = 112 имеет место неустойчивость.  [c.845]

В главах седьмой — десятой решается задача об устойчивости треугольных точек либрации ограниченной задачи трех тел. В главе 7 рассмотрен случай плоской круговой задачи. Наиболее существенное исследование устойчивости в этом случае раньше было проведено Леонтовичем и Депри. В их работах [37, 111] для решения задачи устойчивости применялась теорема Арнольда — Мозера и не были исследованы те случаи, когда эта теорема неприменима. В главе 7 при помощи результатов главы 4 задача об устойчивости треугольных точек либрации решена полностью. Показано, что в области устойчивости в первом приближении точки либрации действительно устойчивы по Ляпунову, за исключением двух значений параметра [г, при которых имеет место неустойчивость. Эти значения и [Хг соответствуют резонансам сох = Зсоа и (01 = 3(02 между частотами линейной системы.  [c.13]

Задача о произвольной нестационарной деформации профилей или их движения при постоянной циркуляции в потенциальном потоке сводится к вычислению квадратурами типа (3.13) дополнительной касательной к контуру слагающей Vg скорости по ее заданной нормальной слагающей Vfi иди же к решению соответствующей неоднородной задачи относительно функции тока или потенциала течения вытеснения . Первая задача такого рода — о плоском движении жидкости в треугольной полости вращающегося тела — была решена Н. Е. Жуковским в 1885 г. (эта задача имеет отношение к течению во вращающейся радиальной решетке с прямыми лопатками). Вращение одиночного тонкого профиля и двух профилей тандем было изучено Л. И. Седовым в 1935 г. затем им же был дан общий подход к решению подобных задач в рамках теории тонкого профиля. Общие свойства потока через вращающуюся круговую решетку и, в частности, ее конформное отображение на прямую рассмотрел П. А. Вальтер в 1926 г. Основные задачи обтекания таких решеток решены Г. И. Майка-паром (1949, 1953, 1958, 1966), Л. А. Дорфманом (1956), Т. С. Соломаховой  [c.125]

В большинстве рассмотренных работ, связанных с контактными задачами, предполагалось, что трение между штампом и упругим телом отсутствует. Значительно большие математические трудности представляет другой предельный случай, когда штамп и основание находятся в условиях сцепления (такая задача есть частный случай основной смешанной задачи теории упругости). В отличие от более простых смешанных задач, в этом случае дело сводится к отысканию двух гармонических в полупространстве функций с неразделенными краевыми условиями первого и второго рода. Впервые такая задача для кругового штампа была решена В. И. Моссаковским (1954) путем сведения ее к плоской задаче линейного сопряжения двух аналитических функций. Впоследствии Я. С. Уфлянд (1954, 1967) дал непосредственное решение этой задачи с помощью тороидальных координат и интегрального преобразования Мелера — Фока. В статье Б. Л. Абрамяна, Н. X. Арутюняна и А. А. Баблояна (1966) осуществлен еще один подход к той же задаче, основанный на использовании парных интегральных уравнений. Контактным задачам при наличии сцепления посвящена также работа В. И. Моссаковского (1963). Решение основной смешанной задачи теории упругости для полупространства с прямолинейной границей раздела краевых условий дано Я. С. Уфляндом (1957) с помощью интегрального преобразования Конторовича — Лебедева.  [c.36]


Смотреть страницы где упоминается термин Задача двух тел плоская кругова : [c.126]    [c.205]    [c.247]    [c.390]   
Элементы динамики космического полета (1965) -- [ c.229 ]



ПОИСК



Задача двух тел

Плоская задача



© 2025 Mash-xxl.info Реклама на сайте