Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

227, 264, 313 329 — Анизотропия Влияние температуры

Подтверждено, что поперечная схема прокатки по сравнению с продольной обеспечила значительно меньшую анизотропию механических свойств. Исследование влияния температуры испытаний на ударную вязкость листов, полученных по поперечной и продольной схемам прокатки, показало, что при всех температурах испытаний (в интервале от +20° С до —60°С) ударная вязкость листов поперечной прокатки выше, чем листов продольной прокатки, а разница в значениях ударной вязкости для листов поперечной прокатки при испытании  [c.235]


Учитывая последнее обстоятельство, образцы для изучения влияния температуры на анизотропию механических свойств металла вырезали из заготовки (или предварительно деформировались) таким образом, чтобы главные оси анизотропии совпадали с направлением главных осей тензора напряжений при последующих испытаниях. Если учесть, что технология изготовления заготовок (прутков) обеспечивала симметрию меха-  [c.386]

Развитие этого принципа измерения в нашей стране состоит в использовании изгибных и крутильных колебаний (в последнем случае стержень крепят к ОК сургучом). Метод используют для измерения упругих постоянных в зоне контакта, упругой анизотропии (при изгибных колебаниях в двух перпендикулярных плоскостях), ползучести и температуропроводности материалов типа полимеров. Наблюдают за изменением этих величин под влиянием температуры, радиационного облучения. Вопрос контроля твердости чугуна рассмотрен далее.  [c.257]

Некоторое представление о теплофизических свойствах композиционного материала типа Мод 30 можно получить из табл. 6.9. Теплоемкости матрицы и материала мало различаются, и влияние углеродного волокна на значение теплоемкости незначительно. Коэффициенты теплопроводности и линейного расширения а во многом определяются анизотропией матрицы, а также пористой структурой. При высоких температурах (выше 1127 °С) термическое расширение быстро закрывает начальные поры и трещины, поэтому термические свойства композиционного материала приближаются к свойствам твердой фазы углерода [98]. Температурный коэффициент линейного расширения высокоплотного пироуглерода характеризуется высокими значениями в трансверсальном направлении, что в меньшей степени проявляется для композиционного материала.  [c.178]

Появление новых методов и средств определения структуры, строения и состава поверхностных слоев, возникающих в процессе трения, позволяет расширить научные и прикладные исследования в области граничной смазки, химико-физических свойств присадок к маслам. Важным является получение тонких поверхностных пленок на поверхностях трения под влиянием контактных давлений, температур, временного фактора, химического взаимодействия материалов и смазочных сред, при воздействии окружающей среды. На всех стадиях формирования граничных слоев решающее влияние имеют адсорбционные процессы, кинетика образования и разрушения поверхностных пленок. Целесообразно получить реологические уравнения для граничных смазочных слоев при высоких давлениях, скоростях сдвига, температурах с учетом анизотропии свойств.  [c.197]

Рис. 3.74. Влияние низких температур на анизотропию механических свойств холоднокатаной нержавеющей стали Рис. 3.74. Влияние низких температур на анизотропию механических свойств холоднокатаной нержавеющей стали

Тепловой режим конструкций энергетических устройств из композитных материалов (КМ) в ряде случаев характеризуется интенсивным теплообменом на поверхности, высокими скоростями изменения температуры во времени и большими градиентами температур внутри этих конструкций. При этом в материале возникают нелинейные физико-химические явления, которые часто ведут к снижению несущей способности конструкций. К ним относятся структурные фазовые превращения, взаимодействие компонентов, расслоение, температурные и структурные напряжения, изменение теплофизических, упругих, прочностных и других характеристик, реологические эффекты. Расчет предельного состояния конструкции, находящейся в таких условиях, должен включать описание процессов теплопроводности, термо- и вязкоупругости, кинетики химических реакций, аэродинамики фильтрующих газов, диффузии, а также требует из-за анизотропии свойств определения большого количества теплофизических и механических характеристик материалов. Точный расчет с учетом изменения характеристик от температуры весьма сложен, так как связан с решением нелинейных интегродифференциальных уравнений с переменными коэффициентами. На достоверность его результатов большое влияние оказывает трудность представления и выбора достаточно полно отражающей действительность модели процесса, связанного с необратимыми явлениями.  [c.7]

Точное определение констант упругости некоторыми экспериментаторами открывало возможность проведения исследований во многих областях, в которых изучались наличие сходных черт у различных тел, анизотропия кристаллических материалов, влияния различных термических воздействий таких, как отжиг или изменение температуры окружающей среды, или различие между изотермическими и адиабатическими свойствами, а также влияния электрических и магнитных явлений на свойства металлических тел. С помощью такой базы, позволяющей выполнять количественные оценки, стало возможным исследовать эффекты на основе модели упругого континуума и атомистических моделей различных состояний металла, историй предварительной обработки, составов и структур. Начиная со значений, найденных Кулоном, подавляющее большинство опубликованных констант упругости было получено динамическим способом. Интенсивное использование в XIX и начале  [c.242]

Изменения предела прочности и предела текучести при изгибе, твердости быстрорежущих сталей марки R6, закаленных с различных температур, в зависимости от температуры отпуска приведены в табл. 90. Температуры нагрева под закалку, обеспечивающие наибольшую твердость и наибольший предел прочности при изгибе, тоже не совпадают, но путем вариаций температур отпуска можно установить оптимальное значение для того и другого. Предел прочности на изгиб и ударная вязкость быстрорежущей стали марки R6, полученной с помощью электрошлакового переплава, при той же твердости существенно выше тех же характеристик стали с более неоднородной структурой. Данные о влиянии трехкратного отпуска по одному часу на предел прочности при изгибе быстрорежущих сталей марок R6 (6—5—2) и R10 (2—8—1) приведены в табл. 91. Предел прочности на изгиб быстрорежущей стали типа 6—5—2, полученной путем электрошлакового переплава, в случае, почти такого же предела текучести при сжатии немного меньше, чем быстрорежущих сталей типа 2—8—1, легированных почти исключительно молибденом, но существенно больше, чем у сталей, содержащих 18 % W (см. табл. 78). Данные о влиянии температуры закалки на предел прочности при изгибе и работу разрушения при изгибе в продольном и поперечном направлениях для сталей марки R6, полученных электрошлаковым переплавом и обычного качест,-ва, приведены в табл. 92. Благоприятное воздействие электрошлакового переплава очевидно как в продольном, так и в поперечном направлениях. Значительно уменьшается анизотропия свойств.  [c.225]

Константы упругости сплава АЛ-19 при снижении температуры изменяются незначительно. Полученные отклонения практически лежат в пределах разброса. Более заметно влияние температуры на константы упругости сплава Д16Т, Снижение температуры приводит к увеличению модуля Юнга как в осевом, так и в тангенциальном направлениях. При этом более интенсивный рост модуля наблюдается в осевом направлении. Если при нормальной температуре отношение модуля Юнга в осевом направлении к модулю в тангенциальном направлении составляет 0,91, то при температуре —180° С оно равно 0,98. Соответствующие отношения коэффициентов Пуассона равны 0,94 и 1,01. Это указывает на заметное уменьшение анизотропии упругих свойств сплава с понижением температуры.  [c.388]

Характер изменения анизотропии пределов текучести и пределов прочности с понижением температуры показан на рис 216, б, из которого видно, что степень влияния температуры на анизотропию сплавов увеличивается с уменьшением последней. Так, изменение соотношений сгу ге/ао.гг и сГвэ/сТвг в интервале температур от—100 до —180° С более заметно, чем в интервале от 20 до —100° С, хотя во втором случае диапазон изменения температуры в 1,5 раза шире.  [c.390]

Модуль упругости определяют на эластициметре при изгибе, но в условиях опыта он идентичен модулю Юнга. На один образец затрачивают не более 2—3 мин. Прибор имеет довольно высокую точность, позволяет проводить исследования, которые не всегда выполнимы обычными способами, может быть применен для образцов, вырезанных как из плит, так и из готовых деталей [17]. С помощью эластициметра целесообразно изучать динамику изменения модуля упругости материалов в зависимости от влажности окружающей среды, длительности эксплуатации, анизотропии, влияние инициаторов и ускорителей полимеризации и многие другие факторы. В некоторых случаях прибор оборудуют дополнитель-ным приспособлением для проведения измерений при различных температурах. Эластициметр предназначен также для оценки вну-треннего трения пластмасс.  [c.17]


Рис. 6.4.1. Влияние температуры на коэффициенты анизотропии железа [Kittel, 1971, h. 16]. Рис. 6.4.1. Влияние температуры на коэффициенты анизотропии железа [Kittel, 1971, h. 16].
Результаты этих вычислений приведены в табл. П7.1 для двух достаточно экстремальнь1Х примеров большой и малой поверхности Ферми, а именно а) гипотетического металла в приближении свободных электронов с электронной плотностью, соответствующей благородным металлам, и б) висмута при ориентации поля вдоль бинарной оси. В случае (а) одно из выбранных фиксированных значений поля составляет 10 Гс, что соответствует максимальному достижимому полю большинства лабораторий, а другое равно Н = 2 X 10" Гс, что типично для наибольшего поля, которое можно получить с помощью обычного электромагнита с железным ярмом. Для случая (б) фиксированное значение поля выбрано равным 5 X 10 Гс, что примерно равно одной трети Р и соответствует приблизительно тому наибольшему значению поля, при котором формулы еще справедливы. Влияние температуры иллюстрируется некоторыми результатами при 5 К для (а) и при 5 и 20 К для (б). Поскольку для ориентации вдоль бинарной оси в висмуте два из трех эллипсоидов дают одинаковые площади экстремальных сечений, все численные значения вдвое превышают результаты формул (третий эллипсоид дает гораздо более высокую частоту, и здесь им можно пренебречь). Все данные табл. П7.1 относятся к величине Мц, а соответствующие значения для величин Л/ /Я или ЛМ АН определяются формулой (2.114), т. е. получаются умножением данных табл. П7.1 на соответствующие значения величины ( /Р) Р/АВ). ПоряДки величины этого множителя анизотропии указаны в табл. П7.2 для некоторых типичных случаев.  [c.602]

Таким образом длительная эксплуатация в условиях АЭС не существенно влияет на статическую и циклическую трещиностойкость стали 08Х18Н10Т отсутствует заметная анизотропия характеристик трещиностойкости как в исходном состоянии, так и после длительной эксплуатации в условиях АЭС установлено влияние температуры на циклическую трещиностойкость.  [c.161]

Выделение слоистых структур в конструкции ЭВ необходимо не только с целью подбора методик расчета, адекватно отражающих напряженное состояние элементов конструкции, но и назначения для каждого слоя и расчетного случая соответствующего коэффициента запаса прочности. Такой подход обусловлен анизотропией свойств используемого материла, а именно различием по пределам прочности однонаправленного стеклопластика вдоль и поперек направления армирования в десятки раз, различием предела прочности на сжатие растяжение даже в одном направлении в несколько раз, различием влияния температуры и длительности воздействия на длительную прочность от вида нагрузки (сжатие, растяжение, сдвиг) в несколько раз. В зависимости от характера работы композиционного материала коэффициент запаса принимается равным от 2,5 до 10 (Конструкционные стеклопластики. М. Химия, 1979, 360 с, ил.). Меньшие значения характерны при назначении коэффициентов для характеристик материала в направлении армирования, большие значения при назначении коэффициентов поперек армирования и сдвиговых характеристик. При конструировании стеклопластиковой муфты были предприняты все усилия, чтобы для всех расчетных случаев работоспособность ЭВ зависела только от характеристик стеклопластика в направлении армирования (а именно в направлении армирования максимально реализуются прочностные и жесткостные свойства армированных материалов), что и позволило принять для основных расчетных случаев коэффициент запаса 3,0.  [c.97]

Первый этап призван в режиме "Мониторинг" реализовать прочностное сопровождение методической плоскости с координатами "Жизненный цикл объекта диагностики" - "Жизненный цикл развития дефекта" по всей протяженности объекта диагностики. Таким образом, проектные данные по геометрии объекта, условиям нагружения, свойствам материалов и допустимым дефектам должны быть проанализированы наравне с имеющейся на эксплуатируемых объектах текущей документацией (диспетчерские журналы, журнал проведения ремонтно-восстановительных работ, протоколы дефектоскопических обследований, акты расследования аварий и отказов и т.п.). Поскольку расчетная схема для оценки прочности и остаточного ресурса оперирует вполне определенными формализованными знаниями, то на втором этапе необходимо выполнить схематизацию объекта (обычно путем интерпретации реальных конструктивных элементов геометрическими фигурами пластина, цилиндр, конус, сфера и т.п.), дефектов (приведение реальных дефектов, обнаруженных средствами технической диагностики к канонической форме, удобной для проведения прочностных расчетов), свойств материалов (в первую очередь, предел текучести, временное сопротивление, критическое значение коэффициентов интенсивности напряжений материалов и их сварных соединений в данных условиях эксплуатации (с учетом влияния температуры, скорости и ассиметрии нагружения, среды, анизотропии свойств, масштабного эффекта, деградации свойств в результате старения материалов и т.п.), условий нагружения (внешние силовые факторы, воздействующие на данный конструктивный элемент должны быть схематизированы по определенным правилам). Общим замечанием ко второму этапу работ "Подготовка исходных данных" является то, что схематизация должна быть консервативной и приводить к достаточно простым расчетным схемам.  [c.90]

Основным состоянием свободного иона кобальта является состояние оно расщепляется кубической компонентой электрического поля на дублет и триплет, причем последний лежит ниже. В результате совместного действия тетрагональной компоненты электрического поля и спин-орбптальной связи триплет расщепляется на три крамеровских дублета, находящихся приблизительно на расстоянии 10 друг от друга. Влиянием более высоко лежащих дублетов пренебречь нельзя, и при температурах, выше водородных, закон Кюри не выполняется. При температурах жидкого гелия закон Кюри выполняется, но восприимчивость обладает очень большой анизотропией. Эксперименты по парамагнитному резонансу [184] дали для направления тетрагональной оси значение расщепления ц = 6,45 и для  [c.494]

Отвлекаясь от трудностей при самых низких температурах, следует отметить, что церий-магниевый нитрат обладает рядом интересных свойств. С теоретической точки зрения он представляет единственное пзвестное в настоящее время вещество, магнитные свойства которого полностью, или почти полностью, определяются магнитным дииольным взаимодействием, поэтому подробные исследования его свойств при более низких температурах должны представлять значительный интерес. (В предварительных экспериментах, проведенных в Лейдене, было обнаружено отсутствие остаточного магнитного момента.) С экспериментальной точки зрения существенно, что очень низкие температуры могут быть получены при не очень больших значениях поля, а также что вплоть до весьма низ) их температур Т равно Т. Кроме того, благодаря значительной анизотропии после размагничивания можно включить поле в направлении тригональной оси без большого влияния на температуру. Однако церий-магниевый нитрат практически пеири-годен для исследований, в которых необходимо применять порошкообразные образцы или спрессованные блоки (например, если должен быть осуществлен хороший тепловой контакт с другими исследуемыми материалами). В этом случае между отдельными кристаллами возникают значительные разности температур, которые при самых низких температурах не успевают выравниваться в течение практически приемлемого иромен утка времени (см. п. 19).  [c.508]


Измерения на Ми были выиолнены в Оксфорде [366]. Использовался кристалл ejMg-3 (N0g)i2-24H20, в котором небольшая часть ионов магния была замещена марганцем. Оказалось, что при Т = 0,01 анизотропия обнаруживает максимум (анизотропия в максимуме была равна 28%). Ниже этой температуры анизотропия убывает и при 7 = 0,003° составляет 21%. Этот эффект был приписан влиянию магнитного поля, в месте расположения марганца, вызываемого ионами церия. По этой причине было приложено внешнее магнитное поле напряженностью 1000 эрстед в направлении малого значения g для ионов церия (см. п. 48). Этим путем при самых низких температурах была достигнута анизотропия 90%. Исследовалась также линейная поляризация у-лучей [367].  [c.601]

Установлено, что коэффициенты термического расширения однонаправленного композита в осевом направлении отрицательны и малы по абсолютной величине, а в поперечном направлении принимают большое положительное значение. Совместное влияние анизотропии и низкой прочности при поперечном растяжении вызывает возникновение температурного растрескивания в ортогонально армированных пластиках в результате их охлаждения ниже температуры отверждения.  [c.366]

Приложение нагрузки к заготовкам отграфитированного материала при термомеханической обработке изменяет анизотропию свойств графита. Для оценки влияния анизотропии свойств на формоизменение графита были использованы материалы, полученные при термомеханической обработке с деформацией до 40%, Основой служили графит марки ГМЗ, а также сажевая композиция. Облучение таких материалов при температуре 140°С флюенсом до l,7-102i нейтр./см приводит к сильному  [c.170]

На рис. 4.21 для графитового материала, близкого к изотропному, иостроена такая диаграмма зависимости изменения-объема от температуры и дозы (флюенса) [17]. Рельеф поверхности отображается на чертеже изохорами. При этом отсчет температуры начат с О С. Влияние анизотропии исключено путем рассмотрения не линейного, а объемного изменения раз-  [c.190]

ЭФФЕКТ [Коттона — Мутона состоит в возникновении оптической анизотропии у некоторых изотропных веществ (жидкостей, стекол, коллоидов) при помещении их в сильное внешнее магнитное поле (магнитокалорический — изменение температуры магнетика при адиабатическом изменении напряженности магниторезистивный — изменение электрического сопротивления твердых проводников под действием) магнитного поля магнитоупругий — влияние деформаций на намагниченность ферромагнетика Меесбауэра — испускание или поглощение гамма-квантов атомными ядрами, связанными в твердом теле, не сопровождающееся изменением внутренней  [c.300]

В настоящее время громадный интерес представляет количественное прогнозирование механического поведения,. или уравнение состояния в условиях циклического нагружения. Это огромная самостоятельная область, и здесь о ней следует хотя бы упомянуть. Уравнения (модели) состояния позволяют прогнозировать связь между напряжением и скоростью деформации на основе данных об интенсивности деформационного упрочнения, конкурентных ему процессах возврата и об их влиянии на состояние материала, формирующееся при циклическом нагружении. Эти процессы воспроизводят зависимость свойств материала от температуры, а само состояние материала отражает его собственную деформационную предысторию. Пытаются также учитывать дополнительные сложности, например, многоосные напряженные состояния, анизотропию свойств (как у монокристаллов) и другие ориентационные особенности, присущие суперсплавам, — активизацию октаэдрического и кубического скольжения, механическую анизотропию при знакопеременном (растя-жение-сжатие) нагружении. В значительной мере разработку этих моделей вели для решения проблем ядерной промышленности [21]. Развитие моделей, нацеленных на нужды изготовителей газотурбинных двигателей, было поддержано NASA [22, 23].  [c.346]

Отмечая большую роль вида присадок, К. В. Савицкий, А. П. Савицкий и др. связывают их эффективность в основном с растворимостью в твердом кадмии и количеством жидкости, образовавшейся при верхней температуре цикла. Однако подобного рассмотрения, по-видимому, недостаточно. Если на границах зерен по достижении верхней температуры цикла возникает жидкая прослойка, а уровень термоструктурных напряжений обусловлен преимущественно свойствами практически нелегированного кадмия (растворимость в кадмии многих использованных в работах [210— 212] примесей низкая, и влияние их на анизотропию термического расширения и упругие характеристики твердого раствора не должно быть большим), то остаются невыясненными причины различной эффективности присадок. Эффгкт висмута, например, при термоциклировании кадмия в десятки раз больше, чем сурьмы, несмотря на то что растворимость сурьмы в кадмии меньше, чем висмута [242]. Не нашло объяснения и влияние меди, растворимость которой при 300° С составляет 0,1%, тогда как для необратимого увеличения объема кадмия при термоциклировании оказалось достаточным введения 0,05% Си.  [c.105]

Одним из способов повышения прочности и долговечности оборудования является способ создания искусственной анизотропии свойств, в частности путем нанесения высоковязких наплавок на пути предполагаемой траектории трещины. Для количественной оценки влияния высоковязких наплавок на характеристики трещиностойкости, в связи с изучением возможности повышения надежности лопастей гидротурбин, были проведены статические испытания на вне-центренное растяжение образцов из стали СтЗВсп с наплавкой, выполненной электродом ЦТ-28 (образцы по рис. 5.7, материал № 9, табл. 5.1). Из результатов испытаний, представленных на рис. 5.18, следует, что при выходе трещины на границу раздела происходит значительное (в 1,7...8 раз) повышение трещиностойкости композиции при нормальной температуре. При этом большее повышение характерно для энергетических и деформационных характеристик.  [c.132]

Цинк имеет гексагональную плотно упакованную решетку (ГПУ). Этим объясняется резкая анизотропия его свойств. При комнатной температуре цинк в литом состоянии малопластичен, а при 100-150 °С становится пластичным и может подвергаться обработке давлением — прокатке, прессованию, штамповке и глубокой вытяжке. Технологичность цинка в процессе обработки давлением зависит от его чистоты. Отрицательное влияние на горячую обработку давлением оказывает примесь олова, обра-  [c.716]

Под влиянием переплавов снижается также обогащение загрязняющих компонентов границ зерен. Когезионная прочность более чистых границ зерен намного выше. Поэтому, например, показатели вязкости очищенной от загрязняющих примесей стали менее чувствительны к размеру зерен аустенита, чем сталей, изготовленных обычным путем. Измеренный при высокой температуре показатель, характеризующий вязкость стали К13ан,грС V-образным надрезом), очищенной электрошлаковым переплавом, также значительно повысился в сравнении с обычной выплавкой как в случае стали С нормальным, так и с крупным зерном (рис. 23). Под воздействием переплава существенно снижается также и анизотропия показателей вязкости.  [c.42]

Повышение содержания вольфрама до 8—10% (сталь марки W2) приводит отчасти путем увеличения степени легированностн твердого раствора, отчасти путем увеличения количественного содержания карбидов к большей твердости, устойчивости против отпуска и теплостойкости по сравнению со сталью марки W3 (см. рис. 213 и 214). Повышение теплостойкости и устойчивости против отпуска по сравнению со сталями марок К13 —К14 приблизительно до температуры 600 С минимально, однако при более высоких температурах становится уже заметным (см. рис. 214). Значительная часть карбидов не растворяется даже при повышенных температурах нагрева при закалке. Например, при температуре 1100° С около 6% карбидов остаются нерастворенными. Вследствие большего (приблизительно 15%) содержания карбидов меньше остается возможностей для равномерного их распределения, поэтому вязкие свойства сталей таких типов хуже. Между измеренными значениями ударной вязкости по краям и в середине инструментов больших сечений можно наблюдать все более увеличивающую разницу (анизотропию). Такую разницу в небольшой степени можно обнаружить и в теплостойкости. Влияние времени выдержки при нагреве, скорости охлаждения и условий отпуска на механические свойства инструментальной стали марки W2 приведено в табл. 118. От скорости охлаждения при закалке в большой степени зависят вязкость и содержание легирующих компонентов в твердом раство-  [c.272]

В качестве примера влияния анизотропии на деформационные п прочностные свойства полимеров приведем, полученные нами зависимости предела прочности (рассчитанного на начальное сечение) и удлинения при разрыве е от температуры для одиоосно ориентированной пленки из фторопла1рта-4.  [c.136]

Вдобавок к открытию существенной нелинейности при малых деформациях дерева, цементного раствора, штукатурки, кишок, тканей человеческого тела, мышц лягушки, костей, камня разных типов, резины, кожи, шелка, пробки и глины она была обнаружена при инфинитезимальных деформациях всех рассмотренных металлов. Явление упругого последействия при разгрузке в шелке, человеческих мышцах и металлах температурное последействие в металлах появление остаточной микродеформации в металлах при очень малых полных деформациях явление кратковременной и длительной ползучести в металлах изменение значений модулей упругости при различных значениях остаточной деформации связь между намагничиванием, остаточной деформацией, электрическим сопротивлением, температурой и постоянными упругости влияние на деформационное поведение анизотропии, неоднородности и предшествующей истории температур факторы, влияющие на внутреннее трение и характеристики затухания колебаний твердого тела явление деформационной неустойчивости, известное сейчас, после работы 1923 г., как эффект Портвена — Ле Шателье, и, наконец, существенные особенности пластических свойств металлов, обнаруженные в экспериментах, в том числе явление при кратковременном нагружении,— все эти свойства, отраженные в определяющих соотношениях, были предметом широкого и часто результативного экспериментирования, имевшего место до 1850 г.  [c.39]


Опыты показывают, что характеристики ползучести некоторых материалов различны при растяжении и при сжатии. Это явление связано, возможно, с малой начальной анизотропией материала (например, вследствие обработки давлением), которая практически не сказывается на упруго-пластическом поведении материала при нормальных температурах и относительно кратковременных статических испытаниях, но может оказать существенное влияние на процесс ползучести. В ряде случаев эти различия настолько существенны, что их нельзя не принимать во внимание при расчетах. На рис. 151 изображены, например, крршые ползучести при растяжении и сжатии жаропрочного сплава 5-816 (43,2 / кобальта, 19,9 /q никеля, 19,8 / хрома) при температуре испытания 870°С (по опытам Ерковича и Гварнери, США).  [c.241]


Смотреть страницы где упоминается термин 227, 264, 313 329 — Анизотропия Влияние температуры : [c.44]    [c.37]    [c.40]    [c.338]    [c.320]    [c.345]    [c.346]    [c.650]    [c.219]    [c.17]    [c.104]    [c.18]    [c.180]    [c.272]    [c.261]    [c.534]    [c.44]    [c.61]   
Механические свойства металлов Издание 3 (1974) -- [ c.248 , c.249 , c.256 ]



ПОИСК



227, 264, 313 329 — Анизотропия Влияние температуры и давления

227, 264, 313 329 — Анизотропия Влияние температуры и способа нагружения

Анизотропия

Влияние Влияние температуры

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте