Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

7-- с открытым профилем — Кручение

Открытые профили. Определяя при кручении напряжения и деформации в тонкостенных стержнях открытого профиля типа  [c.227]

Для прокатных профилей значение 1, приводится в специальных таблицах. Следует отметить, что для таких профилей (тонкостенных открытого профиля) очень мала по сравнению с ], для стержней сплошного круглого сечения той же площади, не говоря уже о кольцевом сечении. Поэтому следует избегать работы стержней открытого профиля на кручение.  [c.123]

При несвободном (стесненном) кручении, когда депланация сечений затруднена, приведенные выше формулы непригодны. Общая теория стесненного кручения тонкостенных стержней открытого профиля разработана В. 3. Власовым. Он показал, что при стесненном кручении кроме касательных напряжений чистого кручения, вычисляемых по приведенным выше формулам, в поперечном сечении возникают значительные дополнительные касательные и нормальные напряжения. Изложение теории стесненного кручения тонкостенных стержней выходит за пределы краткого курса сопротивления материалов.  [c.123]


Дополнительные касательные напряжения кручения распределяются в сечении по законам для открытого профиля. При этом  [c.338]

Вопрос о кручении тонкостенных стержней с замкнутыми и открытыми профилями был рассмотрен в гл. И. При этом определялись только касательные напряжения в поперечных сечениях стержня. Остановимся теперь на некоторых дополнительных особенностях.  [c.341]

Рассмотрим кручение стержня с открытым профилем (рис. 395). Пусть при кручении стержня поперечные сечения поворачиваются  [c.342]

Стесненное кручение тонкостенных стержней открытого профиля  [c.344]

Ку 3 ь м и н Н. Л. Кручение и изгиб тонкостенных стержней открытого профиля. Стройиздат, 1950.  [c.378]

Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]

Открытые профили. Определяя при кручении напряжения и деформации в тонкостенных стержнях открытого профиля типа швеллера, двутавра (рис. 224) или уголка, можно воспользоваться теорией расчета на кручение стержней прямоугольного сечения. В этом случае незамкнутый профиль разбиваем на прямоугольные элементы, толщина которых значительно меньше их длины. Как видно из табл. 14, для таких прямоугольных элементов (при /г/й >10) коэффициенты аир равны 1/3. Тогда для составного профиля на основании выражений (9.33) и (9.37)  [c.246]

Заметим, что нагрузка р хз) не обязательно должна лежать в плоскости x-iXi, она может действовать в параллельной плоскости. Величины прогибов и нормальных напряжений при изгибе от этого не меняются, как будет видно из приводимого ниже вывода. Однако касательные напряжения зависят от положения плоскости действия сил, они могут потребовать для своего уравновешивания приложения к торцам балки крутящих моментов. Если ось х-2. есть ось симметрии сечения, то, очевидно, крутящий момент не потребуется, если нагрузка лежит в плоскости Хг, Хз, нагрузка в любой параллельной плоскости будет вызывать кручение. Однако, если ось есть главная центральная ось сечения, по не ось симметрии, и нагрузка лежит в плоскости Хг, Хз, изгиб, как правило, будет сопровождаться кручением чтобы кручения пе было, ось х должна проходить не через центр сечения, а через некоторую точку, называемую центром изгиба. Элементарная теория, позволяющая найти центр изгиба для тонкостенных стержней открытого профиля, была изложена в 3.7, распространение ее на стержни произвольного сечения служит предметом теории изгиба Сен-Венана, которая в этой книге излагаться не будет.  [c.387]

Другим примером зависимости деформативности бруса от вида поперечного сечения являются брусья тонкостенного коробчатого поперечного сечения, показанные на рис. 10.2. У одного из них замкнутое тонкостенное поперечное сечение, а другой имеет разрез контура, в результате чего оказывается существенно ослабленным и значительно хуже противостоит закручиванию концевыми моментами. Как показано в 13.10, эта разница в жесткостях при кручении тонкостенного стержня замкнутого профиля (рис. 10.2, а) и стержня открытого профиля (рис. 10.2, б) весьма существенна.  [c.208]


Пусть средняя линия поперечного сечения тонкостенного стержня открытого профиля имеет вид гладкой кривой. При свободном кручении такой стержень деформируется так, что ведущая роль  [c.311]

Полные нормальные и касательные напряжения в поперечном сечении. Как установлено при рассмотрении задач кручения, касательные напряжения при кручении тонкостенных стержней открытого профиля распределяются по толщине стенки поперечного сечения по линейному закону. При этом постоянная по толщине часть напряжения определяется через относительный угол закручивания 0 по формуле (14.18), а кососимметричная часть — по фор-  [c.335]

Как определяются максимальные касательные напряжения и угол закручивания при кручении брусьев прямоугольного сечения и тонкостенных стержней открытого профиля  [c.207]

КРУЧЕНИЕ ТОНКОСТЕННЫХ БРУСЬЕВ ОТКРЫТОГО ПРОФИЛЯ  [c.181]

Глава 12. СТЕСНЕННОЕ КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ  [c.334]

Если на тонкостенный стержень открытого профиля наложены связи, препятствующие свободному перемещению точек контура при действии крутящих моментов, то такой вид кручения носит название стесненного (изгибного) кручения.  [c.334]

Если напряжение ттах достигнет некоторого предельного значения, замкнутый контур как бы разрезается в продольном направлении и превращается в открытый профиль, сопротивление которого па кручение, как мы знаем, неизмеримо меньше,  [c.139]

Очевидно, например, что кручения не будет, если изгибать симметричный стержень, хотя бы двутавр или швеллер, силами, действующими в плоскости его симметрии. Весьма большая жесткость на кручение замкнутых тонкостенных профилей делает для них вопрос об условиях отсутствия кручения второстепенным. В тех же случаях, когда тонкостенный стержень открытого профиля изгибается в плоскости, даже являющейся главной плоскостью, но не плоскостью симметрии, необходимо принять особые меры для предотвращения крученпя. В этом параграфе мы предполагаем, что в силу тех или ииых обстоятельств кручение отсутствует, значит, никаких иных касательных нап])яжеиий, кроме как от изгиба, в стержне нет.  [c.94]

В литературе принято называть эти уравнения уравнениями теории пологих оболочек. Соответствующие решения оказываются затухающими на расстоянии по дуге порядка X = 1/Rh. Многие авторы рекомендуют применять их и для оболочек, размер которых в плане существенно больше, чем Я. Так, Власов рекомендовал эти уравнения для оболочек, у которых стрела подъема не превышает 1/5 пролета, никак не оговаривая при этом относительную толщину. Многочисленные расчеты с помощью приближенных уравнений (12.16.4) и уравнений точной теории, которые мы здесь не приводим, показали, что для оболочек, применяемых обычно в строительной практике, разница сравнительно невелика и рекомендация Власова может считаться практически обоснованной, хотя строгий анализ подтверждает пригодность уравнений (12.16.4) лишь для оболочек, размер которых в плане имеет порядок X, или для исследования краевых эффектов в оболочках положительной гауссовой кривизны. Последняя оговорка существенна. В оболочках отрицательной кривизны состояния изгиба могут простираться сколь угодно далеко вдоль асимптотических линий. В оболочках нулевой кривизны, например цилиндрических, изложенная в 12.13 теория применима далеко не всегда. Действительно, приближенная теория изгиба и кручения тонкостенных стержней открытого профиля, изложенная в 9.15, по существу представляла собою некоторый упрощенный вариант теории оболочек. Краевой эффект от бимоментной  [c.428]

При исследовании кручения значения нормальных напряжений Ov = Ог могут оказаться весьма существенными. Кручение называется свободным, если роль нормальных напряжений в общей деформации бруса мала в сравнении с ролью касательных напряжений. В противном случае кручение называется стесненным. Стесненность кручения связана со стеснением депланацин поперечных сечений. Например, полый круглый стержень (тонкостенный стержень замкнутого профиля) испытывает свободное кручение без депланации поперечных сечений, как показано на рис. 13.3, а. Этот же стержень, будучи разрезанным вдоль одной из образующих открытый профиль), под действием тех же моментов закручивается с расхождением краев разреза в направлении оси, что приводит к депланации поперечных сечений. В этом случае значения малы и кручение остается свободным, при котором продольные (параллельные оси стержня) волокна не изменяют своей длины (рис. 13.3, б). Однако, если у того же разрезанного вдоль образующей стержня-трубки закреплен один на концов, а к другому приложен крутящий момент, характер напряженно-деформированного  [c.292]

Большой ш лад в развитие общей теории оболочек внес В. 3. Власов. Им исследовались общие уравнения теории оболочек, разработаны техническая теория оболочек, полу-безмоментпая теория оболочек, предлоясеиа новая теория изгиба и кручения тонкостенных стерл ней открытого профиля. Ему принадлежит заслуга развития нового вариационного метода применительно к решению задач изгиба п устойчивости оболочек. Исследования В. 3. Власова положили начало созданию новой научной дисциплины — строительной механики оболочек.  [c.11]


Кручение тонкостенных стержней открытых профилей. Пологие нрофилп. Особенность кручения открытых (незамкнутых) профилей состоит том, чю касательное напряжение не может быть постоянным но толщине стенки (см. ])ис. 7.28), так как поток касательных уснлнс должен циркулировать внутри сечения.  [c.214]


Смотреть страницы где упоминается термин 7-- с открытым профилем — Кручение : [c.1092]    [c.126]    [c.307]    [c.311]    [c.325]    [c.325]    [c.181]    [c.342]    [c.215]   
Справочник машиностроителя Том 3 (1951) -- [ c.0 ]



ПОИСК



Открытие

Открытые

Профили Кручение

Профиль открытый



© 2025 Mash-xxl.info Реклама на сайте