Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

352 — Влияние состояния поверхностного слоя

Влияние состояния поверхностного слоя  [c.79]

О влиянии состояния поверхностного слоя на предел выносливости см. [14].  [c.281]

Р — коэффициент, учитывающий влияние состояния поверхностного слоя детали на ее усталостную прочность (выносливость) (см. стр. 242).  [c.230]

Известная зависимость, согласно которой пластический момент сопротивления превышает упругий, причем тем в большей степени, чем менее выгодна форма сечения, отражает ту же закономерность. Может быть установлено определенное соотношение между отношением прочностей поверхностного слоя и сердцевины и относительной толщиной слоя. Наивыгоднейшим является совпадение эпюр Ос и стн по всему сечению. Конечно, следует учитывать влияние состояния поверхностного слоя не только на Ос, но и на Он, так как, например, методы поверхностного упрочнения (цементация, азотирование, поверхностный наклеп и т. п.) создают значительные остаточные напряжения. В тонкостенных изделиях градиент Он обычно мал, а поэтому невыгоден и большой градиент Ос- По-видимому, этим объясняется малая эффективность поверхностного упрочнения для многих тонкостенных деталей.  [c.348]


В расчетах влияние состояния поверхностных слоев деталей машин учитывают коэффициентом состояния поверхности, равным отношению предела выносливости образцов, у которых состояние поверхностных слоев такое же, как и у проектируемой детали, к пределу выносливости таких же образцов со шлифованной поверхностью.  [c.29]

Влияние состояния поверхностных слоев материала на прочность деталей 653  [c.653]

Стремлению отразить в расчетах на прочность влияние перечисленных упрочняющих (наклеп, закалка поверхности) и разупрочняющих (риски, коррозия) факторов препятствует недостаточное развитие теории, которая позволила бы подойти к оценке влияния состояния поверхностных слоев не только с качественной, но и с количественной стороны.  [c.655]

Общая оценка влияния состояния поверхностных слоев материала детали на величину предела выносливости  [c.674]

ВЛИЯНИЕ СОСТОЯНИЯ ПОВЕРХНОСТНОГО слоя  [c.114]

Напряженное состояние поверхностного слоя Напряженное состояние поверхностного слоя имеет свою специфику не только вследствие того, что при таких основных видах деформации как изгиб и кручение максимальные напряжения, определяющие прочность детали, возникают у поверхности, но и из-за влияния следующих факторов.  [c.72]

Напряженное состояние поверхностного слоя оказывает существенное влияние на его эксплуатационные характеристики.  [c.75]

Изменение состояния поверхностных слоев металла проявляется в виде пластической деформации и механического упрочнения, хемосорбции и диффузии из смазочной среды и образования вторичных структур. На эти процессы большое влияние оказывают поверхностно-активные вещества, раскрытию механизма взаимодействия которых с материалом поверхности посвящена специальная литература 126 166].  [c.250]

Выше было рассмотрено влияние концентраторов напряжений на усталость сплавов при малоцикловом нагружении. Однако малоцикловая долговечность зависит не только от наличия концентраторов напряжений в значительно большей степени она изменяется в результате совместного влияния коррозионной среды, условий нагружения, состояния металла, концентрации напряжений, внешней поляризации и пр. Действие этих факторов на долговечность сплавов может проявляться по-разному в зависимости от их химического состава, структурного состояния, а также состояния поверхностных слоев металла. Циклическое нагружение в коррозионной среде при большой общности с процессами коррозионного растрескивания имеет свою специфику.  [c.113]

Выносливость деталей в отличие от образцов в значительной мере зависит от одновременного действия следующих факторов 1) напряженного состояния, вызванного условиями нагружения 2) неравномерности распределения и концентрации напряжений 3) влияния абсолютных размеров, масштабного фактора 4) состояния поверхностного слоя и действия остаточных напряжений 5) влияния эксплуатационных условий (коррозии, температуры, частоты нагружения и т.д.).  [c.211]

Изменение состояния поверхностного слоя. Положительное влияние на стойкость против КР стали типа 18-8 в хлоридах оказывает азотирование [59]. Диффузионное хромирование, сплошные никелевые покрытия также повышают сопротивление КР в различных средах [22, 59]. Хорошие защитные свойства показало алюминиевое покрытие [22]. Обезуглероживание поверхностного слоя коррозионно-стойких сталей также вызывало повышение стойкости против КР. Перспективным способом защиты от КР является создание белого слоя (15—30 мкм) на поверхности стали. Это объясняется более высокой коррозионной стойкостью белого слоя, большой гомогенностью его свойств, а также значительными остаточными напряжениями сжатия в нем [22].  [c.75]


Среди многочисленных факторов, определяющих долговечность, надежность машин и механизмов, ведущее место принадлежит качеству используемых конструкционных материалов. Эксплуатационные свойства материалов определяются их прочностными характеристиками, износостойкостью, коррозионной стойкостью, характером напряженного состояния и др. На эти свойства большое влияние оказывает физико-механическое состояние поверхностного слоя, в том числе остаточные напряжения. Известно, что в поверхностных слоях деталей машин могут развиваться большие технологические остаточные напряжения, по своей величине иногда превосходящие предел прочности материала, в результате чего может образовываться сетка микротрещин. Это явление может произойти как сразу после окончательной обработки, так и через некоторый промежуток времени работы вследствие совместного действия остаточных и рабочих напряжений.  [c.82]

Проведено рентгенографическое исследование влияния непрерывного удаления поверхностных слоев во время деформации на характер субструктуры монокристаллов вольфрама. Изучено влияние искаженного поверхностного слоя, образующегося при деформации, на перегруппировку дислокаций, происходящую при высокотемпературном отжиге. Показана зависимость процесса полигонизации от структурного состояния поверхностных слоев изогнутых вольфрамовых пластин.  [c.165]

Тепло, возникающее в процессе пластической деформации и внешнего трения рабочих поверхностей режущего инструмента об обрабатываемый материал, оказывает огромное влияние на физическое состояние поверхностного слоя. Тепло, повышая пластичность металла, с одной стороны, способствует более глубокому упрочнению, с другой — ускоряет протекание процессов разупрочнения. Следовательно, характер изменения глубины и степени упрочнения металла в процессе деформации поверхностного слоя зависит от количественного соотношения протекающих процессов упрочнения и разупрочнения.  [c.49]

Основными причинами возникновения макронапряжений являются неоднородность пластической деформации и локальный характер нагрева металла поверхностного слоя, а при наличии превращений — разность объемов возникающих структур. В зависимости от условий резания напряженное состояние поверхностного слоя будет определяться либо доминирующим влиянием одного из указанных факторов, либо совместным их действием.  [c.56]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Влияние состояния поверхности детали. Усталостные трещины, как правило, начинаются от поверхности детали. Поэтому состояние поверхностного слоя оказывает существенное влияние на прочность при переменных напряжениях. Риски от мехатаческой  [c.557]

В настоящее время имеется несколько гипотез, объясняющих влияние предварительного упрочнения на износоустойчивость. По данным работы [37], предварительное упрочнение уменьшает износ за счет деформации смятия и за счет истирания микронеровностей на контакте. Как считают авторы [43] и [101], предварительное упрочнение пластической деформацией способствует диффузии кислорода воздуха в металле и образованию в нем твердых химических соединений РеО, РегОз, Рсз04 в результате окислительного изнашивания, происходящего с ничтожно малой интенсивностью. Согласно гипотезе [109] упрочнение поверхностного слоя рассматривается как средство повышения жесткости поверхностных слоев и уменьшения взаимного внедрения при механическом и молекулярном взаимодействии. На этот счет существуют и другие теории. Так, например, по мнению А. А. Маталина [64], главным фактором, определяющим износоустойчивость, является величина остаточных напряжений после приработки изделий. Между микротвердостью поверхностного слоя и его износоустойчивостью имеется определенная связь в процессе изнашивания микротвердость поверхностных слоев после приработки стремится к оптимальному значению однако в силу одновременного влияния разнообразных факторов (шероховатость поверхности, напряженное состояние поверхностного слоя и пр.) эта связь имеет только качественный характер и не может быть использована для практических расчетов.  [c.14]


В настоящей работе изучалось влияние условий испытания на состояние поверхностного слоя и сердцевины лопаток I и II ступеней соплового аппарата, изготовленных из сплава ЖС6К.  [c.165]

Исследование влияния условий испытания на состояние поверхностного слоя лопаток соплового аппарата. Гордеева Т. А., К и ш к и н С. Т., С о-колов А. Н., Браверман М. И., Р ы ж и к о в а М. И. В сб. Температуроустойчивые защитные покрытия. Изд-во Наука , Ленингр. отд., Л., 1968, 165—172.  [c.343]

Предыстория изготовления труб или технологическая наследственность , в первую очередь механическая и термическая обработка, во многом обусловливают коррозию под напряжением. Так, формование уиоминаемых выше разрушившихся спиральношовных труб без должной настройки формующих машин привело к созданию в металле остаточных напряжений до 125 МПа (табл. 4). Кроме того, формующие ролики оставили спиральные вмятины на поверхности с соответствующим наклепом и понижением коррозионной стойкости (наблюдались полосы избирательной механохимической коррозии). Остатки прокатной окалины также создают на поверхности коррозионные гальванопары, которые могут привести электрохимический потенциал локальных участков к значениям, при которых возникают трещины. Механическая обработка поверхности (например, при зачистке поверхности трубы скребками) создает неоднородность физико-механического состояния поверхностного слоя и вызывает сильную электрохимическую гетерогенность поверхности, способствующую развитию значительной локальной коррозии. Большое влияние формы и количества неметаллических включений, т. е. степени загрязнения стали, на коррозионную усталость (снижение выносливости) также обусловлено электрохимической гетерогенностью в области включения, усиливающейся при приложении нагрузки вследствие концентрации напряжений. В этом отношении является неудовлетворительным качество стали 17Г2СФ непрерывной разливки в связи с большой загрязненностью неметаллическими включениями (в частности пластичными силикатами), что привело к почти полной потере пластичности листа в направлении поперек прокатки.  [c.229]

Влияние силы трения. Смазка является наиболее эффективным средством улучшения фрикционных характеристик пары трения — уменьшения коэффициента трения и интенсивности износа. Ее влияние на состояние поверхностных слоев сложно и многообразно. Особенно это относится к поверхностно-активным веществам. Однако и в тех случаях, когда смазка не является по-верхностно-активной, ее присутствие может оказывать существенное влияние на закономерности развития пластической деформации. Так, в работе [105] показано, что смазка заметно уменьшает градиент деформаций по глубине, способствует ее выравниваник> по сечению образца, а в отдельных случаях практически полностью защищает поверхностные слои основного материала от пластической деформации.  [c.63]

Для четвертого этапа — контроля качества изготовления высокопагруженных деталей рекомендуется использовать модели Д (Г), в которых вместо управляемых параметров операций в форме технологических факторов Т используются обобщенные параметры физикохимического состояния поверхностного слоя, которые должны однозначно отражать величины управляемых параметров операций. Рассмотрим в качестве характерного примера аналитический метод поиска обобщенных остаточных факторов для операции растяжения деталей с последующей разгрузкой (операции правки растяжением, модель состояния поверхностного слоя при ускоренных сквозных нагревах и охлаждениях и др.). Пусть деталь имеет форму пластины. В гладких пластинах после растяжения не будет остаточных напряжений (макронапряжений), а наклеп распределится по сечению равномерно, так что в данных деталях остаточные напряжения не информативны и включать их в качестве технологических факторов в /1 (Г) нецелесообразно. Теперь рассмотрим влияние наличия надреза в пластине (модель елочных пазов, лабиринтных канавок.  [c.398]

Рассматривается проблема оптимизации с помощью ЭВМ технологии из-готовлешш деталей ГТД по критериям прочности с учетом действия высоких звуковых частот нагружения и эксплуатационных температур. Дается методика учета охлаждения заделки (для иодавления ползучести) ири расчете цаиряжений в образцах, моделирующих перо лопаток при испытаниях по схеме поиеречны.х колебаний на высоких звуковых и ультразвуковых частотах. Предложена математическая модель и дан пример ее практического использования для оптимизации режимов и законов программного или адаптивного управления операциями. На основе аналитического исследования деформаций в характерных концентраторах напряжений найдены обобщенные параметры для контроля состояния поверхностного слоя, отражающие влияние технологии на сопротивление усталости детали.  [c.438]

Электроэрозионная обработка имеет ограниченное применение для обработки силовых деталей авиационных и ракетных двигателей из жаропрочных сплавов. Но поскольку в некоторых случаях этот метод применяется, например, для обработки лопаток турбин за одно целое с диском в ТНА, то следовало выяснить состояние поверхностного слоя и его влияние на усталостную прочность. Исследование показало, что поверхностный слой сплава ЭИ437А после электроэрозионнрй обработки и последующей термообработки (см. табл. 3.6, режим 35) имеет глубину упрочненного слоя до 35—50 мкм. Интенсивность упрочнения поверхностного слоя при этом незначительна и составляет примерно 13—15%. Такая глубина и степень упрочнения поверхностного слоя связаны с особенностями физико-химических процессов электроэрозионной обработки высокими мгновенными температурами на отдельных участках обрабатываемой поверхности, насыщением поверхностного слоя, преимущественно по границам зерен, углеродом из рабочей жидкости (керосина) и образованием в нем карбидов хрома и титана [1 ].  [c.109]


Смотреть страницы где упоминается термин 352 — Влияние состояния поверхностного слоя : [c.8]    [c.485]    [c.539]    [c.485]    [c.67]    [c.158]    [c.172]    [c.289]    [c.434]    [c.109]   
Справочник машиностроителя Том 3 (1951) -- [ c.364 ]



ПОИСК



Поверхностные состояния

Слой поверхностный

Состояние слоев



© 2025 Mash-xxl.info Реклама на сайте