Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интеграл столкновений Улинга-Уленбека

Интеграл столкновений (4.3.61), впервые полученный в работе [166], напоминает интеграл столкновений Улинга-Уленбека (4.1.86). Отметим, однако, что теперь одночастичные энергии E p,t) содержат поправки Хартри-Фока, а вероятность перехода выражается через Т-матрицу, которая точно описывает рассеяние двух частиц с учетом квантовых статистических эффектов (для фермионов — принципа Паули) в промежуточных состояниях.  [c.296]

Как уже отмечалось, интерес к немарковским кинетическим уравнениям возник в связи с началом активного исследования быстрых процессов в веществе иод действием мощного лазерного излучения. Тот факт, что уравнение Левинсона не нарушает закон сохранения полной энергии, явился приятной неожиданностью . Казалось, что включение эффектов памяти ведет лишь к техническим сложностям в решении кинетических уравнений и не создает каких-либо принципиальных проблем. Очень скоро, однако, численное решение кинетических уравнений типа уравнения Левинсона показало, что все они обладают серьезными дефектами [94]. Во-первых, в процессе решения возникали нефизические отрицательные значения одночастичной функции распределения. Оказалось также, что уравнение Левинсона не описывает релаксацию системы к равновесию после окончания действия внешнего поля и, вообще, в пределе больших времен его решение не стремится к какой-либо стационарной функции распределения. Формальные причины такого поведения решений уравнения Левинсона легко обнаружить. В отличие от интеграла столкновений Улинга-Уленбека (4.1.86), интеграл столкновений Левинсона (4.5.14) не обращается в нуль если в него подставить равновесные распределения Ферми или Бозе ). Иначе говоря, уравнение Левинсона не имеет равновесного решения Поэтому нет ничего удивительного в том, что уравнение Левинсона предсказывает нефизическое поведение системы на стадии релаксации после окончания действия поля. Впрочем, поскольку это кинетическое уравнение имеет внутренние дефекты, возникают сомнения и в его применимости к описанию стадии возбуждения системы полем.  [c.313]


Получить из (4.1.85) выражение (4.1.86) для интеграла столкновений Улинга-Уленбека.  [c.335]

Это выражение называется интегралом столкновений Улинга-Уленбека [157]. Оно соответствует описанию рассеяния двух частиц в борновском приближении. В параграфе 4.3 мы выведем более общее выражение для квантового интеграла столкновений, в котором процесс двухчастичного рассеяния описывается точно.  [c.263]

Неравновесные корреляции, связанные с сохранением энергии. Мы уже говорили в разделах 3.3.4 и 4.3.3, что закон сохранения энергии в кинетической теории требует особого внимания, поскольку, с одной стороны, энергия является интегралом движения и поэтому должна быть включена в набор базисных динамических переменных, но, с другой стороны, среднее значение энергии зависит как от одночастичной, так и от двухчастичной функции распределения. Иначе говоря, баланс энергии определяется не только эволюцией одночастичной функции распределения, но и динамикой корреляций. Напомним, что учет корреляций, связанных с сохранением энергии, является, по существу, основной идеей кинетической теории Энскога для плотных и сильно взаимодействующих систем. На первый взгляд кажется, что для слабо неидеальных газов учет неравновесных корреляций не столь важен, во всяком случае, — в борновском приближении для интеграла столкновений. В марковском режиме эта точка зрения подтверждается нашим анализом, проведенным в разделе 4.3.4. Действительно, мы видели, что интеграл столкновений (4.3.58) совпадает с интегралом столкновений Улинга-Уленбека, если пренебречь вкладом корреляций в двухчастичную матрицу плотности. Как выяснится позже, в немарковском режиме ситуация меняется и корреляции, связанные с законом сохранения энергии, дают вклад в интеграл столкновений уже в борновском приближении. Более того, мы покажем, что именно учет корреляций обеспечивает существование равновесного решения немарковского кинетического уравнения ).  [c.314]

Имеет смысл кратко остановиться на различиях между квантовыми интегралами столкновений Больцмана (4.2.50) и Улинга-Уленбека (4.1.86). Наиболее важная особенность последнего заключается в том, что он содержит комбинации функций распределения, вид которых зависит от типа статистики. С другой стороны, в интеграле столкновений Больцмана квантовые статистические эффекты не включены. Физический смысл различия состоит в том, что эти интегралы столкновений фактически используются для описания разных систем. Выражение (4.1.86) применимо для квантовых газов произвольной плотности со слабо взаимодействующими элементарными возбуждениями (квазичастицами), когда статистические эффекты являются существенными. Квантовый интеграл столкновений Больцмана (4.2.50) применяется для разреженных газов, когда квантовые эффекты важны только при вычислении сечения рассеяния ). Чтобы включить квантовые статистические эффекты в интеграл столкновений Больцмана, необходимо учесть последнее слагаемое в левой части уравнения (4.2.14), описывающее трехчастичное взаимодействие. Этот вопрос будет обсуждаться в параграфе 4.3.  [c.274]



Смотреть страницы где упоминается термин Интеграл столкновений Улинга-Уленбека : [c.321]   
Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.263 ]



ПОИСК



Интеграл столкновений Улинга-Уленбека Чо-Уленбека

Интеграл столкновений Улинга-Уленбека Чо-Уленбека

Интеграл столкновений Улинга-Уленбека Энскога квантовый

Интеграл столкновений Улинга-Уленбека классический

Интеграл столкновений Улинга-Уленбека обобщенный

Интегралы столкновений

Столкновения



© 2025 Mash-xxl.info Реклама на сайте