Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазер твердотельный с оптической накачко

Обычные источники света излучают в широком интервале частот, поэтому в качестве источников накачки применяются лазеры, например твердотельный лазер на рубине. Проникновение света в полупроводник происходит на глубину, значительно большую, чем проникновение электронного пучка, что приводит к излучению больших мощностей одновременно до 50% возрастает к. п. д. Однако общий к. п. д. всей системы из двух лазеров оказывается низким вследствие малого к. п. д. твердотельного лазера, поэтому полупроводниковые квантовые генераторы с оптической накачкой широкого применения не получили.  [c.63]


ТВЕРДОТЕЛЬНЫЕ ЛАЗЕРЫ С ОПТИЧЕСКОЙ НАКАЧКОЙ  [c.168]

Рис. 5.1. Устройство твердотельных лазеров с оптической накачкой Рис. 5.1. Устройство твердотельных лазеров с оптической накачкой
Высокий квантовый выход излучения большинства материалов твердотельных лазеров, таким образом, делает их естественным кандидатом для антистоксовых флуоресцентных охладителей. В этом контексте можно рассматривать эти устройства как лазеры с оптической накачкой, работающие в обратном режиме.  [c.45]

Твердотельные лазеры с оптической накачкой можно представить как устройство, совершающее работу по превращению многомодового  [c.146]

Возможно подразделение лазеров на группы в зависимости от способов накачки. Различают оптическую накачку — при облучении светом определенной частоты — и электрическую — при прохождении тока через рабочее вещество. В последнее время большое внимание уделяется химической накачке, когда инверсия возникает при той или иной химической реакции. В некоторых типах лазеров, например газовых, можно встретить ОКГ как с оптической и электрической, так и с химической накачкой. Полупроводниковые ОКГ могут иметь как электрическую, так и оптическую накачку. С другой стороны, в твердотельных лазерах электрическая накачка не осуществляется, так как используемые твердые тела для ОКГ являются диэлектриками.  [c.17]

Конструкция лазера отличается от твердотельных ОКГ тем, что в резонатор вместо стеклянного стержня помещается кювета с раствором. Инверсия, как и в твердотельном ОКГ, осуществляется при помощи оптической накачки от импульсных ламп. Жидкостные лазеры такого типа могут работать как в режиме свободной генерации, так и в режимах модулированной добротности и синхронизации мод.  [c.64]

Интерес представляют лазеры с ламповой накачкой. Их оптические схемы подобны схеме твердотельного лазера. Активный элемент представляет собой трубчатую кювету из прозрачного в полосе накачки материала, через который прокачивается краситель. Накачка от импульсных ксеноновых ламп, которые вместе с кюветой помещены в диффузное или зеркальное устройство, подобное головке твердотельного лазера. Резонатор образован внешними зеркалами. Схема имеет элементы перестройки по длине волны генерации. Схема импульсного лазера типа ЛЖИ показана на рис, 28. Параметры импульсных лазеров приведены в табл. 5. Длина когерентности этих лазеров менее 2 мм, что делает их неприменимыми непосредственно для голографической съемки. Их можно использовать в системах воспроизведения изображений.  [c.53]

В подавляющем большинстве случаев термооптический возмущенный АЭ можно приближенно представить в виде идеальной линзы термической линзы АЭ (ТЛ АЭ), оптическая сила которой зависит от средней мощности накачки. Специфика материала АЭ, режима накачки, конструкции осветителя и прочие особенности конструкции твердотельных лазеров проявляются в малых аберрациях ТЛ АЭ. Характер этих аберраций может быть весьма сложен, однако для большого числа задач их влиянием на свойства резонатора, по сравнению с влиянием усредненной идеальной ТЛ, можно пренебречь. Поэтому в следующих параграфах исследование резонатора проводится в рамках гауссовой оптики. При этом в 4.2 исследуются общие закономерности поведения резонатора, содержащего внутрирезонаторную линзу. Выделяются два типа резонаторов, наиболее подходящих для использования в твердотельных лазерах. Па этой основе в 4.3-4.6 разрабатываются конкретные алгоритмы построения схем резонаторов твердотельных лазеров как с непрерывной, так и импульсной накачкой.  [c.189]


Метод оптической накачки для газовых лазеров менее эффективен, чем для твердотельных. Во-первых, это связано с тем, что ширина полос поглощения у газов при рабочих давлениях в лазере определяется главным образом (Ян 300 нм) доплеровским уширением и поэтому полосы весьма узки, в отличие от широких полос в твердотельных лазерах. Поэтому попасть в резонанс труднее. Во-вторых, этим методом можно возбуждать только уровни, имеющие четность, противоположную четности основного состояния, поскольку для эффективного оптического возбуждения необходимо, чтобы между основным и возбужденным состояниями был разрешен дипольный переход. Лазерный переход также является дипольно разрешенным, поэтому нижний уровень рабочего (лазерного) перехода должен быстро обедняться за счет безызлучательных переходов в основное состояние. Такая ситуация редко реализуется в газах. И третье неудобство заключается в том, что, как правило, резонансные линии большинства газов находятся в вакуумном ультрафиолете, а в этой области, как известно, практически отсутствуют материа-  [c.101]

Оптическая накачка лазеров на красителях. Для возбужде-НИН красителей чаще всего при-—меняют когерентную накачку излучением твердотельных лазеров (ИАГ N(1 +, стекло с неодимом, рубин), работающих в импульсном режиме. В ка 1е-стве накачивающего излучения используется как основная частота, так и гармоники, например вторая ( ь = 0,53 мкм) и третья ( ь = 0,35 мкм) гармоники излучения лазера ИАГ N(1 +. КПД лазеров на красителях с возбуждением при помощи вспомогательного импульсного лазера достигает десятков процентов. Для этанольного раствора родамина 60 при накачке второй гармоникой лазера на стекле с неодимом был реализован КПД, равный 75%. При использовании когерентной накачки лазеры на красителях могут функционировать в качестве широкополосных усилителей оптического диапазона они могут также осуществлять сравнительно простое и эффективное преобразование оптических частот.  [c.36]

В тех приложениях, где требуются короткие (I—20 не) перестраиваемые лазерные импульсы, оптическая накачка красителя осуществляется с помощью другого лазера. Это может быть твердотельный лазер с модуляцией добротности, работающий на основной частоте или гармонике, лазер на галиде инертного газа или азотный лазер Последний обладает несколько меньшей выходной энергией по сравнению с лазерами другого типа, однако дает относительно недорогой метод генерации коротких перестраиваемых лазерных импульсов в видимой области спектра Перестройка и уменьшение ширины линии излучения лазера на красителе с лазерной же накачкой достигаются с помощью дифракционной решетки и расширителя пучка [160] (рис 5 36). В данном случае расширитель пучка необходим ввиду того, что активная зона в красителе является очень узкой, и в отсутствие расширителя пучка будет освещена лишь малая часть решетки вследствие этого спектральное сужение будет незначительным.  [c.220]

В твердотельных лазерах (рабочее тело -рубин, стекло с неодимом и др.) накачка, как правило, производится специальными источниками излучения 3, направленными на рабочее тело I отражателем 4 (рис. 5.17). Для направления излучения и усиления генерации активный элемент помещают между двумя точно установленными зеркалами-отражателями - резонаторами 2, один из которых в целях вывода излучения из лазера делается полупрозрачным. Вышедшее из лазера излучение фокусируется специальной оптической системой 5 и в виде луча направляется на обрабатываемый объект б.  [c.244]

Из приведенного выше рассмотрения вполне разумно ожидать, что лазеры, в которых используются красители, могут генерировать на длинах волн в области спектра флуоресценции. Действительно, быстрая безызлучательная релаксация внутри возбужденного синглетного состояния 5i приводит к очень эффективному заселению верхнего лазерного уровня, а быстрая релаксация внутри основного состояния — к эффективному обеднению нижнего лазерного уровня. Следует также заметить, что в области длин волн флуоресценции раствор красителя достаточно прозрачен (т. е. соответствующее сеченне поглощения а невелико см., например, рнс. 6.29). Фактически же первый лазер на красителях был запущен поздно (в 1966 г.) [24, 25] относительно времени, с которого началось общее развитие лазерных устройств. Рассмотрим некоторые причины этого. Во-первых, это очень короткое время жизни т состояния 5i, поскольку мощность накачки обратно пропорциональна т. Хотя такой недостаток частично компенсируется большой величиной сечения перехода, произведение ах [напомним, что пороговая мощность накачки пропорциональна (ат) см. (5.35)] все же остается примерно на три порядка величины меньше, чем для твердотельных лазеров, таких, как Nd YAG. Вторая трудность обусловлена синглет-триплетной конверсией. Действительно, если тг ksT то молекулы будут накапливаться в триплетном состоянии, что приведет к поглощению за счет перехода 7 i->-7 2 (который является оптически разрешенным). К сожалению, это поглощение происходит, как правило, на длине волны флуоресценции (см., например, опять-таки рис. 6.29), что приводит к серьезному препятствию для возникновения генерации. Можно показать, что именно поэтому непрерывную генерацию можно получить лишь в случае, когда тг меньше некоторого значения, определяемого свойствами активной среды из красителя. Чтобы получить этот результат, заметим прежде всего, что кривую пропускания флуоресценции красителя (рис. 6.29) можно описать с помощью сечения вынужденного излучения Ое. Таким образом, если N2 — полная населенность состояния 5ь то соответствующее усиление (без насыщения) на определенной длине волны, при которой рассматривается Ое, равно ехр(Ы2<Уе1), где / — длина активной среды. Предположим теперь, что Ыт населенность триплетного состояния Гь Тогда генерация будет происходить при условии, что усиление за счет вынужденного излучения больше потерь, обусловленных триплет-триплетным поглощением, т. е. ,  [c.392]


В заключение данного рассмотрения отметим, что в процессе работы мощного твердотельного лазера имеет место зависимость величины оптической силы ТЛ АЭ [ИЗ] или ТЛ какого-либо другого внутрирезонаторного элемента, например нелинейного [114], от мощности генерации. Этот эффект может быть связан как с поглощением доли мощности генерируемого излучения в элементе, так и с изменением теплового режима работы АЭ при наличии генерации. Подобные эффекты приводят к тому, что параметры резонатора, определяющие мощность генерации, сами начинают зависеть от последней. Такое самовоздействие может довольно сильно влиять, в силу высокой чувствительности резонатора одномодового лазера к термооптическим искажениям элементов, на параметры выходного излучения. Приводить к эффектам гистерезисного типа в зависимости выходных параметров излучения лазера от мощности накачки [114, 115]. При этом следует подчеркнуть, что и в этом случае использование схем с динамической стабильностью дает ослабление действия подобных механизмов.  [c.226]

До сих пор мы рассматривали лазеры непрерывного действия. Твердотельные оптические квантовые генераторы работают, как правило, в импульсном режиме. Такой режим характерен, например, для очень распространенных генераторов на рубине ( =0,69 мкм) и неодимовом стекле (Л=1,06 мкм). Длительность импульса составляет обычно 0,0001—0,001 с. Энергия и мощность генерируемого излучения зависят от размеров кристалла и интенсивности накачки. Небольшие кристаллы дают за одну вспышку энергию порядка 1 Дж, средние — 50—100 Дж, большие — до 1000 Дж. Мощность, генерируемая во время импульса, может достигать в этих случаях колоссальных значений — вплоть до миллионов ватт.  [c.31]

Л. ОВЩЙГ ХАРАКТЕРИСТИКИ И ОСОБЕННОСТИ ГЕНЕРАЦИИ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ С ОПТИЧЕСКОЙ НАКАЧКОЙ  [c.168]

В гл. 1 мы показали, что процесс, который переводит атомы с уровня 1 на уровень 3 (для трехуровневого лазера см. рис. 1.4, а) или с уровня О на уровень 3 (для четырехуровневого лазера см. рис. 1.4,6), называется накачкой. Накачка осуществляется, как правило, одним из следующих двух способов оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных (например, для рубинового или неодимового) или жидкостных (например, на красителе) лазеров. Механизмы ушире-ния линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно мы имеем дело не с накачкой уровней, а с накачкой полос поглощения. Следовательно, эти полосы поглощают заметную долю (обычно широкополосного) света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что у них спектральная ширина линий поглощения невелика, а лампы для накачки дают широкополосное излучение, осуществить оптическую накачку довольно трудно. Замечательным исключением, которое следует отметить, является цезиевый лазер с оптической накачкой, когда пары s возбуждаются лампой, содержащей Не при низком давлении. В данном случае условия для оптической накачки вполне благоприятны, поскольку интенсивная линия излучения Не с 390 нм (достаточно узкая благодаря низкому давлению) совпадает с линиями поглощения s. Фактически этот лазер представляет интерес лишь в историческом плане, как одна из первых предложенных лазерных схем. Кроме того, его реализация на практике является весьма сложной, поскольку пары s, которые для обеспечения достаточного давления газа необходимо поддерживать при температуре 175 °С, представляют собой весьма агрессивную среду. Оптическую накачку весьма эффективно можно было бы использовать для полупроводнико-  [c.108]

Из всего многообразия существующих в настоящее время лазеров авторы данной книги остановились на применении ЭВМ при разработках только двух типов лазеров — газовых и твердотельных, причем особое внимание уделяется лазерам большой мощности, имеющим наибольшее применение в промышленности. В книге прямые и обратные задачи расчета и проектирования лазеров, их проблемы и перспективы разработки САПР рассматриваются на примерах газовых электроразрядных лазеров, газовых лазеров с оптической накачкой и лазеров на конденсированных средах. Все критические замечания, советы и пожелания мы просим направлять по адресу Ленинград, ул. Саблинская, 14, ЛИТМО, Кафедра квантовой электроники.  [c.5]

Основными элеменгами твердотельного лазера с оптической накачкой являются цилиндрический лазерный стержень, спиральная или линейная лампа-вспышка, отражатель, обеспечивающий хорошую оптическую связь между лампой-вспышкой и лазерным стержнем, и оптический резонатор, содержаш,ий зеркала с полным и частичным отражением.  [c.275]

АИГ Nd-лазер принадлежит к твердотельным лазерам с оптической накачкой. Лазерно активными веществами служат синтетические кристаллы иттрий-алюминиевого граната (Y3AI5O12), содержащие ионы Nd + в объемной концентрации, приблизительно равной 1,5 %. Более высокие концентрации невозможны вследствие различия в радиусах ионов Nd и Y +. АИГ-кристаллы имеют кубическую решетку и поэтому являются оптически изотропными. На рис. 2.13, а показана схема уровней энергии иона Nd +, находящегося в электрическом поле кристалла. Из левой части рис. 2.13, а видно, что схема относится к четырехуровневому лазеру.  [c.75]

Усиление любого лазера обычно меняется по диаметру активной среды, причем оно максимально в центре трубки и спадает к краям. В газовых лазерах характеристика усиления более однородна и воспроизводима, тогда как в твердотельных лазерах с оптической накачкой усиление сильно зависит от геометрии оптической накачки и может заметно меняться как при замене ламп-вспышек, так и при перемещении самого лазерного стерлсня. В твердотельных лазерах изменение усиления на протяжении одного импульса лучше всего изучать фотометрическим методом. Здесь мы рассмотрим только вопрос об исследовании радиального изменения усиления в случае газовых лазеров. Очевидно, что теми же методами можно исследовать твердотельные лазеры непрерывного действия.  [c.248]

При этом мы не будем рассматривать суш,ествуюш,ие на сегодняшний день многомодовые твердотельные лазеры с оптической накачкой, ибо они нам кажутся непригодными для применения в линиях связи. Как импульсные, так и непрерывно ра-ботаюш,ие твердотельные лазеры часто испускают излучение в виде пичков, характер которых определяется активной в данный момент модой. Разность частот двух мод, зависяш,ая от изме-няюш,ихся во времени размеров кристалла и показателя преломления, обычно попадает в СВЧ-диапазон. Поскольку выходной сигнал твердотельного лазера многомодовый, после детектирования он будет содержать очень сложные произведения перекрестной модуляции. В принципе от многомодового характера излучения твердотельных лазеров можно избавиться, пользуясь известными методами селекции мод. Но при этом резко падает выходная мош,ность лазера, а к. п. д. оказывается настолько низким, что такой прибор уже не мол ет конкурировать с ионными газовыми лазерами непрерывного излучения.  [c.454]


Очевидно, что резонаторы, у которых малые изменения ТЛ приводят к значительным изменениям потерь, неудобны с практической точки зрения, так как требуют либо больших усилий по стабилизации оптических характеристик внутрирезонаторных элементов, либо допустимость нестабильности выходных параметров излучения. В связи с этим подавляюгцее большинство схем резонаторов твердотельных лазеров, как с непрерывной накачкой, так и с импульсной, располагается вблизи экстремумов зависимости 7(р). Поэтому, прежде чем переходить к рассмотрению алгоритмов построения конкретных схем, исследуем более подробно условия реализации и характер экстремумов.  [c.208]

Газовые лазеры. Ширина энергетических уровней в газах довольно мала (порядка нескольких гигагерц и меньше), поскольку в них по сравнению с твердым телом более слабо действуют механизмы, вызывающие уширение линий. Поэтому оптическая накачка с помощью ламп, применяемых для твердотельных лазеров, неэффективна для газовых лазеров, так как в активной газовой среде нет широких полос поглощения.  [c.288]

Чтобы закончить эти вводные замечания, следует упомянуть о специальном виде оптической накачки, когда лазерный луч используется для накачки другого лазера лазерная накачка). Свойства направленности лазерного пучка делают его очень удобным для накачки другого лазера, причем здесь не требуется специальных осветителей, как в случае (некогерентной) оптической накачки. Такая накачка является довольно простой, и в дальнейшем мы ее не будем рассматривать. Хотелось бы лишь здесь отметить, что благодаря монохроматичности излучения лазера накачки ее применение не ограничивается лишь твердотельными и жидкостными лазерами (как в случае некогерентной оптической накачки), но ее можно также использовать для накачки газовых лазеров. В данном случае линия, излучаемая накачивающим лазером, должна, разумеется, совпадать с линией поглощения накачиваемого лазера. Это применяется, например, для накачки большинства газовых лазеров дальнего ИК-Диапазона (скажем, таких лазеров, в которых используются метиловый спирт СНзОН в виде паров) с помощью излучения соответствующей длины волны СОглазера.  [c.109]

Вообще говоря, энергетические уровни в газах уширены довольно слабо (ширина порядка нескольких гигагерц и меньше), поскольку действующие в газах механизмы уширения слабее, чем в твердых телах. Действительно, в газах, находящихся при обычных для лазеров давлениях (несколько мм рт. ст.), столк-новительное уширение очень мало и ширина линий определяется главным образом доплеровским уширением. В связи с этим в газовых лазерах не используется, как в твердотельных лазерах, оптическая накачка с помощью ламп. В самом деле, такая накачка была бы крайне неэффективна, поскольку спектр излучения этих ламп является более или менее непрерывным, в то время как в активной газовой среде нет широких полос поглощения. Как уже упоминалось в гл. 3, единственный случай, когда генерация была получена в газе при оптической накачке такого типа, — это цезий, возбуждаемый линейной лампой, заполненной гелием. В данном случае условия для оптической накачки вполне благоприятны, поскольку некоторые линии излучения Не совпадают с линиями поглощения s. Однако цезиевый лазер  [c.343]

Лазеры с импульсно-периодической накачкой характеризуются, как правило, меньшей величиной термоонтических искажений АЭ рт 2 дп) и более высокой плотностью мощности излучения, нежели лазеры с непрерывной накачкой. Эти особенности имеют существенное значение при разработке схемы резонатора. Во-первых, умеренный уровень термооптических искажений АЭ приводит к тому, что оптимальный размер основной моды в АЭ определяется не величиной паведеппой анизотропии или аберрациями АЭ, а поперечным размером АЭ уоо (0,5 -г 0,7)Ло- Поскольку обычно радиус АЭ Ло 2,5 мм, то оптимальный размер перетяжки основной моды гио > 1,5 мм, что существенно больше, чем в резонаторах с высоким уровнем термооптических искажений АЭ. Таким образом, резонатор твердотельного лазера с импульсной накачкой должен обеспечивать сравнительно большой размер основной моды в АЭ. Во-вторых, необходимо избегать сильной фокусировки излучения на внутрирезонаторных элементах, в частности па зеркалах. Это связано с высокой пиковой мощностью излучения импульсных лазеров, особенно работающих в режиме генерации гигантских импульсов и конечной лучевой стойкостью оптических элементов. Поэтому при построении схемы резонатора, с учетом требуемых мощностных характеристик лазера, приходится вводить ограничения на предельно допустимый размер перетяжки основной моды на элементах резонатора. Так, если предельно допустимая плотность мощности излучения, определяемая лучевой стойкостью элементов,  [c.226]

Принципиальная схема твердотельного лазера представлена на рис. 6.22. Твердый активный элемент 2 размещают в резонаторе между двумя зеркалами 1 ш 3. Зеркало 1 полностью отражает все падающее на него излучение, а зеркало 3 является полупрозрачным. Оптическая накачка активной среды осуществляется энергией газоразрядной лампы-вспыщки 4 с источником питания 6. Для получения более эффективного облучения лампу 4 вместе с активным элементом 2 помещают в кожух 5, на внутреннюю поверхность которого нанесено отражающее покрытие типа серебра, золота и др. Кожух 5 имеет эллиптическую форму, а лампа и кристалл размещаются в фокусах эллипса. Этим достигаются условия равномерного и интенсивного освещения кристалла.  [c.439]

Для повышения эффективности оптической накачки стараются использовать в качестве уровня возбуждения достаточно ишрокую энергетическую полосу или группу уровней и обеспечить при этом соответствие частоты перехода (частот переходов) в канале возбуждения максимуму в спектре излучения лампы накачки. Применяют также жтод сенсибилизации, заключающийся в добавлении в матрицу наряду с основными (генерирующими) ионами ионов другого типа — ионов-сенсибилизаторов. Ионы-сенсибилизаторы достаточно эффективно поглощают излучение накачки и затем передают поглощенную энергию ионам-активаторам ). Другой метод повышения эф ктивности твердотельных лазеров предполагает использование в качестве кристалла-матрицы не простых соединений, а смешанных разупорядоченных систем (твердых растворов), что приводит к существенному уширению спектра поглощения [20].  [c.27]

Эффективность оптической накачки в случае твердотельных и жидкостных лазеров связана прежде всего с относительно большой шириной линий поглош ения твердых и жидких аетивных сред — порядка 0,1 мкм >. Газовые активные среды характеризуются существенно более узкими линиями поглош ения — шириной 10 мкм и менее. Для осущест вления оптического возбуждения в газе необходимо, чтобы излучение накачки обладало линейчатым спектром с достаточно узкими линиями и чтобы максимум хотя бы одной интенсивной линии источника накачки точно совпадал с максимумом одной из линий поглощения активного центра.  [c.41]

Установка состоит из рабочего тела /, лампы накачки 2, обеспечивающей световую энергию для возбуждения атомов активного вещества-излучателя. Полученное излучение фокусируется и направляется с помощью оптической системы 3 на свариваемое изделие 4. Мощность твердотельных лазеров невелика — 0,015—2 кВт. Газовые лазеры обладают более высокой выходной мощностью, работают в непрерывном и импульснсш режимах и по своим технологическим возможностям становятся конкурентно-способными с электронно-лучевой сваркой.  [c.17]

В импульсных С. источником излучения обычно являются твердотельные. и полупроводниковые лазеры, работающие в ближнем ИК-диапазоне (0,8- -1,06 мкм), излучение к-рых формируется в виде коротких импульсов. Медленно меняющиеся расстояния измеряются с помощью одиночных импульсов при. быстро меняющихся расстояниях применяется непрерывно-импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50—100 Гц, полупроводЕШКОвые — до 10 —10 Гц, Короткие импульсы (20—40 нс) твердотельных лазеров формируют в режиме модуляции добротности с помощью различного рода оптических затворов. В полупроводниковых лазерах генерация коротких импульсов мощностью до сотен Вт осуществляет- ся путём формирования коротких импульсов тока накачки.  [c.464]

К повышению Р . пр ведет также такое изменение формы элементов, которое приводит к уменьшению перепадов температуры при неизменной плотности тепловыде-чения, например, уменьшение диаметра элемента при одновременном увеличении его длины, членение объема на части путем продольных или поперечных (дисковые активные элементы) распилов и т. п. Каждый из указанных приемов обладает своими недостатками. Так, при переходе от цилиндрических элементов к пластинчатым равного объема с большим значением отношения ширины к толщине вытянутая форма поперечного сечения пучка излучения доставляет большие неудобства для последующего его преобразования оптическими системами применение лазеров с дисковыми активными элементами сдерживается меньшим КПД системы накачки и трудностями при создании иммерсионных хладагентов, охлаждающих торцовые поверхности дисков и попадающих в пучок генерируемого излучения. Так что в целом термомеханическое разрушение активных элементов продолжает оставаться фактором, препятствующим более широкому использованию стеклянных активных сред в практике создания и использования твердотельных лазеров.  [c.29]


Достижение наивысших характеристик лазеров, работающих в напряженных режимах накачки, возможно лишь с использованием тех или иных приемов компенсации термооптических искажений, которые часто усложняют оптическую схему и конструкцию излучателя. В практике создания лазеров массового спроса часто предпочитают простоту конструкции достижению предельных характеристик. В этом случае учет термооптических эффектов при выборе элементов резонатора и их взаимного расположения, конструкции системы накачки, режима работы системы охлаждения является особенно необходимым. В настоящей главе рассмотрены лишь те вопросы выбора элементов и конструирования излучателей лазеров на неодимовом стекле и АИГ Nd, которые непосредственно связаны с термооптикой лазеров. Общие же рекомендации по конструированию твердотельных лазеров можно найти в работах [8, 119].  [c.118]

Настоящая книга содержит пять глав. Гл. 1 посвящена оптике гауссовых пучков. Глава 2 посвящена методу интегрального уравнения. В ней рассматриваются методы исследования лазерных резонаторов, содержащих негауссовы элементы — диафрагмы с резким краем, элементы с аберрациями и др. В главе 3 исследуются резонаторы, содержащие несколько оптических элементов (например, вспомогательные зеркала) различного назначения. Вспомогательные зеркала могут влиять на продольный спектр резонатора, в частности, делать его более редким. При этом важную роль играет согласование поперечных мод лазерного резонатора. В лазерах па красителях дополнительные оптические элементы позволяют реализовывать одномодовый режим генерации. Глава 4 посвящена резонаторам твердотельных лазеров. Их основной особенностью является наличие термооптически искаженного под влиянием накачки активного элемента. Отыскание ре-зонаторных конфигураций, наименее восприимчивых к нестабильностям накачки, является довольно трудным делом, читатель почерпнет в четвертой главе много полезного для себя в этом отношении. В главе 5 излагаются геометро-оптические методы исследования резонаторов. Введение и гл. 1, 3, 5 написаны В.П. Быковым гл. 2, 4 — 0.0. Си-личевым.  [c.8]

Анализируя характер термооптических искажений АЭ под действием накачки, мы пришли к выводу, что в первом приближении их можно представить в виде идеальной термической линзы, оптическая сила которой меняется при изменении накачки. В этом параграфе исследуем, как меняются свойства резонатора, содержащего ТЛ, при изменении мощности накачки, что эквивалентно исследованию резонатора, содержащего лиизу с изменяющейся оптической силой. Данный анализ позволит выявить оптимальные виды резонаторов твердотельных лазеров и создать основу для последующего построения алгоритмов их расчета.  [c.198]

Классификация лазеров с учетом различных методов накачки. Традиционно лазеры классифицируют по типу активной среды, распределяя их по четырем основным группам газовые, жидкостные, твердотельные, полупроводниковые. Более точная классификация должна учитывать не только тип активной среды, но и используемый метод накачки. Подобная классификация приводится на рис. 1.3 ). В схеме на рисунке указываются типы накачки оптическая, с использованием самостоятельного электрического разряда, электроионизационная, тепловая, химическая, рекомбинационная. Эти типы накачки отмечались выше при перечислении физических механизмов возбуждения. Надо, однако, иметь в виду, что вопросы создания инверсии должны рассматриваться с учетом не только процессов возбуждения, но и процессов релаксации энергетических уровней.  [c.15]

Лазер (оптическии квариовын генератор) — источник когерентного излучения, в котором используется вынужденное излучение а1(>мов и молекул. В качество активного тела в лазерах используются твердые тела (кристаллы и стекла с добавками ионов хрома, неодима, рбия и др.), жидкости, в которых растворены окислы эти элементов, газовые смеси, а также полупроводниковые монокристаллы (арсенид галлия с р — п переходом). Активное тело возбуждается и генеррфует излучение под действием энергии систем накачки" твердотельные и жидкие активные тела возбуждаются светом импульсных ламп, газовые смеси в основном возбуждаются энергией газового разряда, полупроводниковые активные элементы используют энергию электрического тока, протекающего через р — п переход.  [c.384]


Смотреть страницы где упоминается термин Лазер твердотельный с оптической накачко : [c.356]    [c.175]    [c.154]    [c.5]    [c.232]    [c.64]    [c.81]    [c.190]    [c.238]   
Лазеры сверхкоротких световых импульсов (1986) -- [ c.75 , c.336 ]



ПОИСК



Лазер

Лазер твердотельный

ОГС-лазеров в ДГС-лазерах

Оптическая ось с лазером



© 2025 Mash-xxl.info Реклама на сайте