Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модификация поверхности сплаво

Металлокерамические сплавы 333 Модификация поверхности сплавов 326  [c.357]

Относительно новым направлением в коррозионной защите сплавов от СР является модификация поверхности, которая достигается путем ее специальной обработки, снижающей поверхностную концентрацию электроотрицательного компонента. В итоге поверхностные слои сплава до эксплуатации обогащаются в контролируемых условиях электроположительным и, следовательно, более коррозионно-стой-  [c.191]

Если поверхностный слой более электроотрицателен, чем основа сплава, то, смещая потенциал непокрытых участков в отрицательную сторону, он может в определенных условиях оказывать катодную электрохимическую защиту, действуя как протектор. Таким примером служат цинковые или кадмиевые покрытия по железу в условиях атмосферы или в нейтральных средах. Это так называемая анодная модификация поверхности.  [c.324]


Если основа сплава склонна в данных условиях к пассивации, то, наоборот, более электрохимически положительный потенциал поверхностного слоя может смещать потенциал непокрытых участков в область пассивации и способствовать анодной электрохимической защите оголенных участков от коррозии. Примером этого может служить наличие тончайшего (даже не сплошного) слоя палладия или платины на поверхности титана или нержавеющей стали при их использовании в подкисленных средах [20, 42]. Это так называемая катодная модификация поверхности. Важно отметить, что электрохимическая защита при катодной модификации поверхности стабильнее во времени, чем при анодной. Причина заключается в том, что при анодной модификации анодный слой во времени (например, цинковое покрытие по железу) постепенно растворяется в анодном процессе, в то время как при катодной модификации (например, палладий на поверхности титана) катодный ком-  [c.324]

Химический состав покрытия может заметно влиять на распределение содержания легирующих элементов в поверхности сплавов. Тщательным изучением взаимодействия покрытий со сплавами, модификацией составов покрытий можно практически устранить изменения в поверхностных слоях сплавов при их нагреве с покрытиями, обеспечив тем самым высокие механические свойства деталей.  [c.230]

Титану и его сплавам свойственна высокая химическая активность. Поэтому на их поверхности при выдержке на воздухе или в любой другой среде, содержащей свободный кислород, очень быстро образуется тонкая бездефектная оксидная пленка, прочно связанная с основным металлом. Оксид, образующийся на ювенильной поверхности титана на воздухе или в коррозионной среде, был идентифицирован как тетрагональная модификация диоксида титана —рутил. Толщина пленки оксида образовавшегося при 20°С на воздухе или в среде, как правило, находится в пределах 0,40-0,60 нм. До тех пор, пока пленка имеет малую толщину, она прочно связана с матрицей и не имеет дефектов на границе оксид—металл, вследствие чего она сохраняет достаточно высокую пластичность и деформируется вместе с металлом. В местах сильной локализации пластической деформации, где происходит разрыв пленки, практически мгновенно образуется новая защитная пленка тоже без дефектов на границе оксид—металл. Это происходит при отсутствии тормозящих факторов.  [c.59]

В случае упрочняемых выделениями сплавов на основе железа и никеля может быть построена интересная модификация рассмотренной выше общей модели. Названные сплавы упрочняются когерентными выделениями, поверхности которых могут быть менее привлекательными местами накопления водорода, чем границы когерентных выделений. Однако, как отмечалось выше, важной стадией водородных процессов в этих сплавах является уменьшение когерентности выделений при малых деформациях [124,  [c.140]

При трении кобальта по кобальту наиболее низкий коэффициент трения наблюдается для его низкотемпературной модификации, имеющей гексагональную кристаллическую решетку (рис. 1). Сплавы на основе кобальта с высоким содержанием молибдена, кремния и ванадия оказались более износостойкими, и после некоторого упрочнения рабочих поверхностей могут быть использованы при трении в вакууме.  [c.46]


Для получения информации об упругих свойствах аморфных сплавов используют метод изгиба при многочисленных модификациях этой методики 12.141. Следует однако, отметить, что как и в случае одноосного растяжения, здесь наблюдается высокая чувствительность механических характеристик к геометрии и качеству поверхности ленточных образцов. Применение метода внутреннего трения для изучения неупругих свойств аморфных сплавов ограничено сложностью трактовки получаемых результатов в связи с отсутствием удовлетворительной модели. этого явления применительно к аморфному состоянию [12.151.  [c.172]

Инконель X является ковкой, немагнитной, упрочняющейся при старении модификацией инконеля, разработанной первоначально для газовых турбин и реактивных двигателей, где требуются высокая прочность на разрыв и низкая степень ползучести при температурах до 815° С. При комнатной температуре он сохраняет 80% той прочности на ускоренный разрыв, которой он обладает при 650° С. В случае пружинящих деталей, подвергающихся относительно высоким натяжениям, мягкий или слегка холоднообработанный и подвергнутый старению материал обнаруживает слабое пластическое последействие в течение длительного времени при температурах до 455° С. Для получения минимальной ползучести при наиболее высоких темпер атурах следует не прибегать к холодной обработке. После сильной холодной обработки с последующим старением сплав обладает прочностью на разрыв порядка 17 600—21 100 кг/см , имеет высокое пластическое последействие примерно до 400° С и сохраняет свои свойства при кратковременном воздействии высоких температур. После старения его поверхность необходимо очищать химически или механически перед сваркой илн пайкой. Электрическое сопротивление инконеля при 20° С составляет примерно 120 10 ом см.  [c.234]

ВОВ С областью растворимости ВъА. Сплавы, имеющие диаграмму состояния, изображенную на фиг. 158,а и 158,6, имеют область твердого раствора вблизи компонента А и поэтому возможна обработка по пятой группе с насыщением металла А компонентом В. Для сплавов, имеющих диаграмму состояния, изображенную на фиг. 158, в, диффузия в Л возможна, но лишь при температурах выше когда в данной системе существует компонент А в высокотемпературной модификации у. Ниже компонент А находится в форме а, не растворяющей В, и насыщение при температурах ниже /°эат поверхности путем диффузии В ъ А невозможно.  [c.162]

Для ХТО необходимо наличие растворимости диффундирующего элемента в металле, т. е. необходимо, чтобы насыщающий компонент В мог образовывать с насыщаемым металлом А систему сплавов с областью растворимости В ъ А. Сплавы, имеющие диаграмму состояния, изображенную на рис. 158, а и 158, б, имеют область твердого раствора вблизи компонента А, и поэтому возможна ХТО, состоящая в насыщении металла А компонентом В. Для сплавов, имеющих диаграмму состояния, изображенную на рис. 158, е, диффузия В м А возможна, но лишь выше звт, когда в данной системе существует компонент А в высокотемпературной модификации у. Ниже <эвт компонент А находится в форме а, не растворяющей В, и при температурах ниже вт насыщение поверхности путем диффузии В в А невозможно.  [c.167]

Многие узлы гидравлической системы самолета F/A-18 являются модификацией узлов F-15 насосы, датчики уровня жидкости в баках, трехпозиционные клапаны-переключатели кольцевания. Применение титановых сплавов позволило снизить массу трубопроводов по сравнению со стальными на 30 кг из стали изготовлены цилиндры и нагруженные элементы силовых приводов аэродинамических поверхностей управления.  [c.101]

Горячая коррозия, как особый вид деградации металлических материалов, приобрела важное значение за последние 50 лет [1]. Необходимым условием ее протекания является образование на поверхности материала осажденного слоя соли или шлака, что приводит к изменению характера взаимодействия данного сплава с окружающей средой. Горячая коррозия, т.е. коррозия, модифицированная присутствием на поверхности сплавов слоя осадка, происходит в котлах, мусоросжигающих печах, дизельных двигателях, глушителях двигателей внутреннего сгорания и газовых турбинах. Уровень коррозионного разъедания материалов, работающих в таких условиях, в значительной степени зависит от вида и чистоты используемого топлива, а также качества подаваемого в зону горения воздуха. Так, например, горячая коррозия гораздо чаще встречается в промышленных и морских газовых турбинах, чем в авиационных. Природа горячей коррозии такова, что вызываемое ею разъедание почти всегда приводит к гораздо более сильной деградации сплавов, чем "обычная" коррозия в такой же газовой среде, но без поверхностного модифицирующего слоя осадка. Даже в тех случаях, когда свойства сплава при осаждении на его поверхности соли изменяются незначительно и связанное с присутствием осадка усиление коррозионного разъедания в начальный период времени невелико, скорость разъедания материала в конце концов все равно со временем возрастает на порядок и более за счет модификации самого механизма деградации материала. Важной особенностью процесса горячей коррозии является то, что очень часто этот модифицирующий слой представляет собой жидкость.  [c.49]


Независимо от этого открытия специалисты, работающие в области электрических контактов, обнаружили образование полимероподобных веществ на поверхности таких металлов, как платина, в присутствии ароматических углеводородов. Фрикционная полимеризация стала предметом оживленной дискуссии, причем ее ключевым моментом был вопрос не о том, существуют или нет особые поверхностные структуры, являющиеся продуктами трибохимических реакций, а являются ли эти структуры принципиально отличными от пленок, возникающих при химической модификации поверхности металлов активными присадками смазочных сред, например, соединениями серы и фосфора [100]. Исследование граничного трения металлов и сплавов в многоатомных спиртах привело Д. Н. Гаркунова и И. В. Крагельского к открытию избирательного переноса при трении, механизм которого первоначально  [c.29]

Ионная имплантация — один из наиболее эффективных способов легирования титана и его сплавов. Известно, что титановые сплавы, имея высокие прочностные характеристики, плохо работают в качестве элементов подвижных сочленений машин и механизмов. При умеренных нагрузках и скоростях наблюдается интенсивное схватывание с последующим разрушением контактирующих поверхностей. Модификация структуры поверхности посредством ионной имплантации позволяет повысить износостойкость. Анализ нескольких десят ков различных технологических процессов обработки поверхностей сплавов Ti —6А1—4V показал, что ионная имплантация бария, приводящая к возникновению преципитатов BaTiOs, образующих когерентную границу с TiO и эффективно препятствующих диффузии кислорода, по эффективности повышения износостойкости уступает лишь детонационному и газопламенному напылению. Однако нанесение покрытий приводит к увеличению размеров на единицы и десятки микрометров.  [c.107]

В результате проведенной модификации поверхность металла становится неполярной, не адсорбирует воды и газов и может храниться до склеивания в течение месяца. Конечно, такая поверхность металла не смачивается водой. Модифицированная поверхность склеивается с помощью пленки полиэтилена, который к обычной поверхности металла не имеет адгезии, при температуре 126,5° С в течение 10—15 мин. Полученные после охлаждения клеевые соединения алюминиевого сплава имеют очень высокую длительную прочность при сдвиге 42 кГ1см в течение 6 месяцев при 100% влажности и температуре 26—49° С. Прочность при равномерном отрыве такого клеевого соединения превосходила прочность самой пленки полиэтилена в исходном состоянии.  [c.33]

Чистый титан имеет две модификации. До температуры 882,5°С он существует в виде а-титана с гексагональной решеткой, а выше температуры полиморфного превращения — в виде 0-титана с объемно-центрированной кубической решеткой. Как конструкционньгй материал титан в чистом виде, ввиду низкой прочности, почти не применяется. Титан обычно легируют различными а-ста6илиэирующими (А1, Ga, La, Се. N, С, О) и -стабилизирующими (Н, Nb, V, Мо, Сг, Fe, Со, Ni, Hf, Zr и др.) элементами, существенно изменяющими его структуру и свойства [ 135]. Высокая коррозионная стойкость титановых сплавов обеспечивается благодаря образованию на поверхности плотных химически мало активных оксидных пленок. Титановые сплавы стойки к сплошной и точечной коррозии в сероводородсодержащих средах, морской воде, углекислом и сернокислом газах и других средах. С помощью подбора легирующих элементов и режимов термической обработки сплавов удается достичь = 1500 МПа и более, что обеспечивает титановым сплавам наивысшую удельную прочность среди конструкционных металлических материалов.  [c.70]

На рис. 15а — 15к приводятся микрофотографии шлифов плутония и плутониевых сплавов, показывающие микроструктуру а-, р-, у- и 6-фаз. Сравниваются результаты электролитического и катодного травления. Эти результаты покалывают, что после электролитического травления в светлом поле не выявляются границы зерен различных аллотропических модификаций, если только на них не выделились. чначительные количества промежуточных фаз (или примесей) или сильно ие окислилась поверхность, подвергнутая травлению. Однако травление катодной бомбардировкой 193J частично выявляет границы зерен, н они четко различаются в поляризованном свете, если электролитическое травление проведено в строго определенных условиях (см. выше).  [c.563]

Перечисленные условия дают возможность фиксировать термические остановки в области температур до 1100° с точностью до +0,3°. Как будет показано в главе 13, эта степень точности обычно больше точности, с которой можно определять состав расплава в момент затвердевания. Конечно, самая высокая точность получается только при отсутствии переохлаждения. Когда имеется заметное переохлаждение, то необходимо продолжить определение термической остановки. В этом случае первую кривую, полученную с переохлаждением, можно использовать для приблизительного суждения о положении точки затвердевания сплава. Затем опыт повторяют в условиях, которые обеспечивают более энергичное перемешивание металла и уменьшение скорости охлаждения до 0,5 град/мин. Если это не устраняет переохлаждения, должен быть применен метод модификации расплава. Дл1я этого в верхней части ттигля должны быть предусмотрены отверстия, через которые опускаются небольшие крупинки твердого сплава твердые частички опускаются, когда температура будет выше ожидаемой точки ликвидуса на 1—2°. Введенные частицы служат зародышами, у поверхности которых начинается кристаллизация. В зависимости от того, будет ли температура сплава выше или ниже точки ликвидуса, образующиеся кристаллы твердой фазы могут растворяться или продолжать расти.  [c.153]

Не следует ожидать значительных достижений в разработке суперсплавов для дисков турбин. С тех пор, как в шестидесятых годах были разработаны порошковые суперсплавы (модификации IN-100 и Кепё 95) не появилось никаких новых высокопрочных дисковых сплавов. Исключительно высокая прочность этих сплавов на растяжение придает им желательную максимально высокую малоцикловую усталостную прочность, но достигается это ценой повышения скорости роста трещин при высокоцикловом нагружении. Большие усилия были приложены для сведения к минимуму размеров внутренних дефектов в этих сплавах и для разработки сверхчувствительных неразрушающих методов контроля и оборудования для обнаружения небольших дефектов и трещин в объеме и на поверхности дисков в критически напряженных областях. Вероятность создания еще более прочных сплавов для турбинных дисков мала, так как весь прошлый опыт указывает на более высокую чувствительность к дефектам более прочных сплавов по сравнению со сплавами, используемыми в настоящее время. Привлекает внимание, однако, возможность изготовления более прочных и плотных дисков из сплавов с Э"-матрицей типа NijAl, упрочняемых выделениями частиц второй фазы.  [c.332]

СТМ на основе частичного или полного превращения вюрцитного нитрида бора в кубический. Производят композит 01 (гексанит-Р) и модификации композита 09-ПТНБ (поликристалл твердого нитрида бора), ПТНБ-ИК и др. Гексанит-Р и пластины из композита 10Д (композит 10 на подложке из твердого сплава) применяют для предварительного и окончательного точения и торцового фрезерования сталей и чугунов любой твердости, твердых сплавов в условиях безударной или ударной динамической нагрузки (наличие на обрабатываемой поверхности отверстий, пазов, ребер).  [c.324]


Как было показано, максимум сдвигающих напряжений при трении находится на некоторой глубине от поверхности, определяемой геометрией пятна фактического контакта, реологическими особенностями материала и коэффициентом трения. В частности, для коэффициента трения />0.2 максимальные сдвигающие напряжения расположены на контактной поверхности. Обсуждая возможность изменять трибологические свойства поверхностей за счет модификации структуры тонких поверхностных слоев, следует иметь в виду соотношение между толщиной модифицируемого слоя и глубиной действия максимальных сдвигающих напряжений, определяющих воз- можность пластической деформации и разрушения поверхностных слоев. В частности, при упрочняющей обработке тонких поверхностных слоев наибольшего эффекта следует ожидать при эксплуатации материалов в условиях больших значений коэффициента трения. По-видимому, именно с этим фактором можно связать отсутствие в ряде случаев эффекта ионной имплантации у материалов, предназначенных для работы в условиях трения качения, когда коэффищ1ент трения составляет порядка 10 . Приведенные в табл. 3.2 данные по изменению микротвердости ряда металлов и сплавов при ионной имплантации свидетельствуют, что наиболее интенсивное упрочнение характерно для мятериалов, скпонных к образованию высокопрочных соединений с легирующими ионами.  [c.92]

При окислении жидких сплавов золота с неодимом, содержащих 15 и 50 ат.% Nd, в смеси аргона с 20% кислорода при 1400° на поверхности образцов образуется прочно связанная со сплавами окалина. Данные по кинетике окисления обоих сплавов приведены в табл. 12 (см. стр. 20). Исследованием окалины при комнатной температуре методом рентгеновского анализа было установлено, что на сплаве с 50 ат.% Nd она состоит и гидрата окиси неодима и кубической (тип СаРг) Nd203, а на сплаве с 15 ат.% Nd —только из окисла неодима, структура которого не отвечает ни одной из известных (гексагональная, моноклинная, кубическая) модификаций полуторных окислов редкоземельных металлов [9].  [c.130]

Напомним, что фазой сплава называется совокупность однородных в физическом и химическом отношении частей спмша, имеющих одинаковую кристаллическую рететку и отделенных от остальных частей поверхностями раздела. Жидкий раствор и твердый раствор того же химического состава — различные фазы, потому что их физическое (агрегатное) состояние различно. Две модификации железа — а-Ре и -Ре — различные фазы, поскольку их кристаллические решетки различны.  [c.27]

При автоматической сварке алюминия марок АВ1 (99,85% А1) и АВ2 (99,9% А1) в сварных швах могут появиться трещины. Иногда их на поверхности не наблюдается, но они обнаруживаются при макроисследовании. Одним из возможных способов уменьшения склонности алюминия и его сплавов к образованию горячих трещин является измельчение зерна. Последнее достигается модификацией металла шва. Лучшим модификатором является титан, который вводится в сварочную ванну в виде лигатуры, содержащей 0,98% титана, или через электродную проволоку, содержащую 0,15—0,20% титана. Титан измельчает зерно алюминия и способствует разрушению эвтектических прослоек, залегающих по границам зерен. Это предотвращает образование трещин при сварке. Титан увеличивает также плотность металла шва. При сварке алюминия марок АО (99,6% А1) и А1 (99,5% А1) трещин не образуется. Исправление дефектов можно 92  [c.92]

Ннкель и большинство никелевых сплавов производятся в обычной для деформируемого материала виде — плита, лист, сортовой прокат, грубы и т. д., а в некоторых случаях также в виде плакированного стального листа. Листовой материал можно использовать в качестве коррозионностойкой обшивки химических реакционных аппаратов, а некоторые из сплавов можио применять для наплавки сварных швов, обеспечивающей коррозиониостойкую поверхность соединения. Для тех случаев, где требуются более высокая прочность, чем у обычного металла, выпускаются высокопрочные модификации некоторых матмилов, в частности ннкеля и сплавов N1—Си и N1—Сг. Этн материалы упрочняются за счет дисперсного твердения, поэтому для получения максимальной прочности нужна термообработка. Никель и большинство типов никелевых сплавов выпускаются также в виде литья, а сплав N1—51 и некоторые из сплавов N1-Сг—Ре—Мо—Си с повышенным по сравиеиию с обычным содержанием кремиия производятся только в виде литья. Эти материалы используются главным образом для изготовления насосов и вентилей. Производство и сварка некоторых деформируе-  [c.153]

Кремний 1 — является одним из самых распространенных в природе элементов, составляя около 26% земной коры. Входит в состав многих минералов встречается также в виде свободной двуокиси кремния, главным образом в виде обычного песка. Свободный кремний встречается в виде двух модификаций кристаллической и аморфной.. При высоких температурах кремний реагирует с азотом и углеродом. Он хорошо растворяется во многих расплавленных мгталлах, в ряде случаев образуя с ними (с Mg, Са, Си, Ре, Р1, В1 и др.) соединения, называемые силицидами. Кремний нерастворим в кислотах, но хорошо растворяется в щелочах. Карбид кремния 51С (карборунд) по твердости приближается к алмазу применяется в качестве абразива при шлифовании металлов и других твердых материалов. Сплавы кремния с металлами (в том числе подшипниковые) находят широкое применение в технике (кремнистые стали, пружинные, кислотоупорные, динамная, трансформаторная и др.). Обычно кремний получают в виде сплава с железом (ферросилиций). Силиконы — кремний-органические соединения—используются в качестве изоляционного материала, смазок и т. д. Для повышения жаростойкости металлов в пределах 800—850° С применяется насыщение поверхности металла кремнием (силицирование). Карбид кремния 81С добавляется в карбюризаторы для жидкостной цементации сталей.  [c.6]

Типичным универсальным копировально-прошивочным станком является станок модели 4Е723 Он относится к третьему типоразмеру и является базовым станком, на основе которого созданы различные его модификации Станок универсальный и предназначен для выполнения, в частности, следующих работ изготовления деталей из труднообрабатываемых резанием токопроводящих материалов н сплавов, таких как жаропрочные, твердые и нержавеющие сплавы и термообработанные стали, изготовления деталей из обычных конструкционных и инструментальных сталей, когда их обработка резанием затруднена вследствие сложной формы обрабатываемой поверхности или плохого доступа к зоне обработки, исправления деформированных деталей после их термообработки извлечения остатков сломанного инструмеита.  [c.48]


Смотреть страницы где упоминается термин Модификация поверхности сплаво : [c.198]    [c.219]    [c.226]    [c.227]    [c.124]    [c.518]    [c.102]    [c.560]    [c.138]    [c.356]    [c.236]    [c.628]    [c.12]    [c.560]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.326 ]



ПОИСК



Модификация

Поверхность модификация



© 2025 Mash-xxl.info Реклама на сайте