Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Толмина — Шлихтинга

Одна из них, в отношении которой эксперименты и теория в значительной степени согласуются, сводится к рассмотрению возмущений, представляющих собой совокупность малых колебаний в некотором диапазоне частот, которые накладываются на основное поле течения и могут им селективно усиливаться. Эта теория малых возмущений (известная ка к теория Толмина — Шлихтинга) приводит к заключению, что при числах Рейнольдса ниже некоторого критического значения все возмущения будут затухать, при числах Рейнольдса выше этого критического значения возмущения определенных частот будут усиливаться,  [c.227]


Теория Толмина — Шлихтинга 227  [c.477]

При теоретическом исследовании линейной устойчивости слоя смешения (неустойчивость Кельвина-Гельмгольца) в качестве исходного задается профиль скорости в виде гиперболического тангенса, характерный для сформировавшегося ламинарного слоя смешения. Между тем в выходном сечении формируется ламинарный пограничный слой Блаузиуса, для которого характерна неустойчивость Толмина-Шлихтинга. Однако в теориях линейной устойчивости слоя смешения перестроение профиля скорости от пограничного слоя Блаузиуса до струйного профиля скорости никак не учитывается.  [c.23]

Дж. И. Тэйлор и С. Голдстейн впервые применили для исследования устойчивости расслоенного течения метод малых колебаний. Для случая непрерывного распределения плотности и при линейном распределении скоростей в неограниченно распространенной жидкости они получили в качестве предела устойчивости значение = V4. Влияние вязкости и кривизны профиля скоростей на возмущающее движение они не учитывали. Расчет устойчивости пограничного слоя с расслоением по плотности выполнил, следуя теории Толмина, Г. Шлихтинг В основу расчета он положил профиль скоростей Блазиуса, получающийся при продольном обтекании плоской пластины, а расслоение по плотности учел только в пограничном слое, следовательно, вне пограничного слоя принял плотность постоянной. Вычисления показали, что критическое число Рейнольдса сильно возрастает с увеличением числа Ричардсона (рис. 17.25). А именно критическое число Рейнольдса, составленное для толщины вытеснения, равно Рвкр = 575 при = О (однородная жидкость) и Рвкр = ири == V24 Следовательно, при  [c.473]

До появления логарифмических формул широкое применение как при описании движения в трубах, так и в пограничном слое имели разнообразные эмпирические, в том числе степенные формулы скоростей и сопротивлений. В настоящее время теория турбулентного пограничного слоя еще очень далека от своего завершения, хотя и располагает большим числом эмпирических (Бури, Грушвитц,, Лойцянский, Дёнхсфф и Колз) и полуэмпирических (Калихман, Мельников, Сполдинг, Федяев-ский) методов. К той же области могут быть отнесены вопросы распространения затопленных струй и образования следа за телами (Г. Н. Абрамович, Г. В. Гродзовский, А. С. Гиневский, Л. Г Лойцянский, Д. Н. Ляховский и др. у нас в Советском Союзе, Прандтль, Толмин, Шлихтинг за рубежом).  [c.40]

Впервые уравнения движения жидкости в пограничном слое, ставшие основой теории сопротивления тел в жидкости, были получены Прандтлем в 1904 г. Необходимо отметить, что следовало также решить вопрос и о граничных условиях на стенке, т. е. ответить на вопрос, равна относительная скорость жидкости на стенке нулю, или жидкость скользит вдоль стенки. Жуковский и Прандтль здесь были единодушны и приняли гипотезу полного прилипания жидкости к стенке. Последующие опыты подтвердили эту точку зрения, а сама идея о пограничном слое получила плодотворное развитие в последующих работах Прандтля, а также в работах Кармана, Блазиуса, Польгаузена, Шлихтинга, Толмина и др. Большой вклад в теорию пограничного слоя внесли советские ученые Л. Г. Лойцянский, А. П. Мельников, К. К. Федяевский, А. А. Дородницпн, Н. Е. Кочин, Е. М. Минский, Г. И. Петров, В. В. Струминский и др.  [c.12]


В работе Толмина (1929) методом малых возмущений исследовалось течение в пограничном слое, которое он рассматривал как плоскопараллельное и имеющее профиль скорости, составленный из отрезков прямых и парабол при этом впервые удалось получить форму кривой нейтральных возмущений на плоскости ку Не), отделяющую область устойчивых возмущений от области неустойчивых возмущений. В дальнейшем Толмин (1930, 1947) и Шлихтинг (1933а, б 1935а) перенесли эти результаты также и на случай произвольных профилей скорости. В 1944—1945 гг. вся теория устойчивости плоскопараллельных течений была критически пересмотрена Линем (1945), пересчитавшим заново основные примеры и уточнившим численные результаты Толмина и Шлихтинга. Тем не менее из-за сложности применяемых при этом методов анализа асимптотического поведения решений уравнения  [c.105]

Результаты этой теории могут быть проверены экспериментально на пограничных слоях, возникающих на телах, ограниченных снаружи вогну тыми поверхностями. При этом необходимо иметь в виду следующее. Как и в случае бегущих плоских волн, исследованном Толмином и Шлихтингом ( 2 главы XVI), после достижения нейтральной точки требуется еще некоторое расстояние, чтобы нарастание возмущений привело к переходу ламинарного течения в турбулентное поэтому точка перехода должна лежать ниже по течению, чем нейтральная точка, положение которой определяется из рис. 17.37 1). Опыты по переходу ламинарной формы течения в турбулентную в пограничных слоях на искривленных стенках были выполнены Л. М. Клаузером и Ф. Клаузером [1 ], а впоследствии — Г. В. Липманом [ з],  [c.485]

В, работе Толмина (1929) методом малых возмущений исследовалось течение в пограничном слое, которое он рассматривал как плоскопараллельное и имеющее профиль скорости, составленный из отрезков прямых и парабол при этом впервые удалось получить форму кривой нейтральных возмущений на плоскости (й, Ее), отделяющую область устойчивых возмущений от неустойчивых возмущений. В дальнейшем Толмин (1930, 1947) и Шлихтинг (1933а, б 1935а) перенесли эти результаты также и на случай произвольных профилей скорости. В 1944—1945 гг. вся теория устойчивости плоскопараллельных потоков была критически пересмотрена Линем (1945), пересчитавшим заново основные примеры и уточнившим численные результаты Толмина и Шлихтинга. Тем не менее, сложность используемых при этом методов анализа асимптотического поведения решений уравнения (2.28) приводит к тому, что еще до сих пор полученные результаты в некоторых отношениях нельзя считать окончательными. Дело в том, что используемые асимптотические ряды обычно имеют особенность точке г,. в которой (7(2) —с — О, в то время как исходное уравнение регулярно в этой точке. Поэтому большой интерес представляет нахождение равномерно сходящихся асимптотических разложений, но построение таких разложений пока наталкивается на большие трудности (см., например. Линь и Бенни (1962)).  [c.126]


Смотреть страницы где упоминается термин Теория Толмина — Шлихтинга : [c.112]    [c.130]    [c.158]    [c.396]    [c.112]   
Механика жидкости (1971) -- [ c.227 ]



ПОИСК



Шлихтинг



© 2025 Mash-xxl.info Реклама на сайте