Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резонансные частота собственных колебани

Резонансную частоту собственных колебаний фундамента со станком вычисляют по формулам в вертикальной плоскости = = 0,16 V Sфg)IOz, в горизонтальной плоскости /р =0,7/в, где Q — коэффициент упругого равномерного сжатия грунта, Н/м g — ускорение свободного падения, м/с . Значения допустимого давления р на грунт и коэффициента сжатия грунта приведены в табл. 8.  [c.299]

Здесь X — координата, описывающая вынужденные колебания осциллятора, т— масса осциллятора (электрона), е — заряд свободного электрона, Ze — эффективный заряд осциллятора (он может быть и больше, и мень-,ше е), Г — постоянная затухания осциллятора, 12 — резонансная частота собственных колебаний осциллятора. Интересующее нас вынужденное решение (Д.1.6) с учетом (Д.1.5) имеет следующий вид  [c.295]


Теперь рассмотрим случай, когда частота турбулентных пульсаций жидкости соответствует одной из частот собственных колебаний поверхности пузырька (4. 2. 3) для п 2. Так как затухание собственных колебаний поверхности пузырька очень мало, газовые пузырьки в этом случае будут быстро деформироваться и дробиться. Приравнивая характеристическую частоту турбулентных пульсаций каждой такой резонансной частоте, получим выражение, позволяющее определить критические значения критерия Уе, соответствующие условиям резонанса. В общем случае для моды собственных колебаний и-го порядка из (4. 2. 1) и (4. 2. 5) следует выражение для критического значения е в виде  [c.133]

Частота собственного колебания электрона (так называемая резонансная частота) для свободных атомов обычно лежит за коротковолновой частью видимой области — в ультрафиолетовой области спектра. Поэтому поглощением в видимой области можно пренебречь. В этом случае (при 7 = 0), как следует из  [c.273]

Во-первых, коэффициент поглощения зависит от длины волны и поэтому закон Бугера — Ламберта — Бера справедлив лишь для строго монохроматического излучения. Дисперсия величины к становится особенно сильной вблизи резонанса частоты падающего света с частотами собственных колебаний электронов в атомах. При этом резко возрастают амплитуды вынужденных колебаний электронов и увеличивается вероятность перехода их энергии в энергию хаотического теплового движения. Таким образом, излучение различных длин волн на одном и том же участке пути поглощается в различной степени, а лучи с частотами, близкими к резонансной, практически полностью поглощаются в слое очень малой толщины.  [c.100]

При частоте изменения вынуждающей силы, приближающейся к частоте собственных колебаний системы, амплитуда колебаний увеличивается. Частоту изменения вынуждающей силы, при которой амплитуда вынужденных колебаний достигает максимального значения, называют резонансной.  [c.189]

Когда требуется усилить один определенный тон, выгодно использовать явление резонанса. Для этого нужен такой излучатель, частота собственных колебаний которого равна частоте усиливаемого звука. Примером такого излучателя является резонансный ящик камертона. В том же случае, когда необходимо в равной мере усиливать различные звуки (например, звуки человеческой речи), нужно, наоборот, всячески избегать явлений резонанса. Только при этом возможно воспроизвести правильное соотношение амплитуд составляющих колебаний. Следовательно, для равномерного усиления различных звуков колебания мембраны должны быстро затухать, а частота ее собственных колебаний должна быть больше частоты воспроизводимых звуков.  [c.236]

Способ крепления и расположение крепления существенно влияют на частоту собственных колебаний трубопровода. В процессе эксплуатации недопустимы резонансные явления в трубопроводах от источников вибрации.  [c.138]

Резонансные диэлектрические потери происходят при дисперсии резонансного характера, когда частота электрического поля приближается к частотам собственных колебаний электронов или ионов.  [c.111]

На рис. 68 показана резонансная кривая, выражающая зависимость коэффициента, динамичности от коэффициента расстройки, равного отношению ча- стоты вынужденных колебаний к частоте собственных колебаний.  [c.239]


Под влиянием периодически действующей возмущающей силы в лопатке возникают незатухающие вынужденные колебания. Если частота собственных колебаний лопатки совпадает с частотой возмущающей силы /в, вынужден [ые колебания становятся резонансными, при этом резко возрастают амплитуды и динамические напряжения в лопатке. Опыт эксплуатации показывает, что большой процент аварий связан с усталостными поломками лопаток, вызванными резонансными колебаниями.  [c.281]

Для резонансного силовозбуждения используют инерционный силовозбудитель. Частота вынужденных колебаний машин с таким силовозбуждением яа рабочих режимах близка к частоте собственных колебаний их упругой системы. Это позволяет при малых нагрузках, развиваемых возбудителем, осуществлять испытания на усталость крупных деталей или образцов, требующих для разрушения значительных усилий.  [c.194]

Звуковые волны, падая на ограждение, приводят его в колебание. Ограждение любого вида, являясь системой с распределенными параметрами, т. е. системой, имеющей бесконечный ряд собственных частот со все возрастающей плотностью, приходит в состояние вынужденных колебаний. В тех областях, где частота вынужденных колебаний близка к частоте собственных колебаний ограждения, наступают резонансные явления, и ограждение работает менее эффективно, т. е. звукоизоляция его понижается. Звуковая энергия в соседнем (тихом) помещении возникает и передается в воздух от колебаний поверхности, на которую со стороны источника действует переменная периодическая сила звуковых волн, падающих во всех направлениях на ограждение.  [c.73]

Резонансные методы правильнее назвать методами колебаний, поскольку они объединяют методы свободных и вынужденных колебаний изделия или его части. Именно к вынужденным колебаниям относят понятие резонанса, т. е. совпадения частоты возбуждения с частотой собственных колебаний системы.  [c.125]

Для этого прежде всего нужно во время испытания фиксировать момент образования макротрещин. В принципе это возможно. Одним из способов является испытание образца в условиях резонансного режима. Возникновение заметной трещины обнаруживается по изменению частоты собственных колебаний.  [c.104]

На свободном конце удлинителя 11 имеются площадки для крепления грузов, масса которых выбирается так, чтобы коэффициент эффективности был возможно большим. Практически режим силовозбуждения контролируется по частоте собственных колебаний системы (с учетом массы отсоединенного от возбудителя шатуна 10). Эта частота должна быть равна частоте возбуждения или несколько больше ее. Занижение частоты собственных Колебаний допускать не следует, так как потеря жесткости образца в период развития трещин усталости сопровождается сдвигом резонансной кривой в область меньших значений частот и, следовательно, согласно зависимости (V. 9) резким снижением эффективности возбуждения.  [c.118]

Как видно из рис. 94, изменение жесткости образца мало влияет, на частоту собственных колебаний динамической системы машин с упругими преобразователями. Следовательно, большого повышения эффективности возбуждения и разгрузки деталей возбудителя можно достичь без специальной аппаратурной стабилизации режима испытаний, которая необходима только в области значительных коэффициентов динамического усиления и для машин, работающих в режиме резонансных колебаний (см. гл. VII).  [c.155]

Литература, касающаяся вопросов изгибных колебаний гибких валов, в течение нескольких десятилетий своего существования (до 50-х годов текущего столетия) в подавляющей своей части относилась к определению частот собственных колебаний и критических скоростей вращения валов. Это отражало определенную направленность исследований, которая в свое время была связана с решением основной задачи — отстройки вала от резонансных состояний. Такая задача вытекала из требований, соответствовавших определенному уровню развития техники, и для обеспечения надежной работы валов ее решение на том этапе являлось достаточным. Однако в настоящее время создание мощных паровых и газовых турбин, турбогенераторов, насосов большой производительности с весьма гибкими валами, прядильных веретен, работающих со скоростями, намного превышающими критическую, а также постройка и использование других быстроходных машин ставят задачи обеспечения прочности и устойчивости, которые требуют для своего решения изучения процесса колебательного движения.  [c.111]

ЭМВ обладают свойством отрицательной упругости магнитного поля, заключающимся в том, что резонансная частота механического колебательного контура, элементом которого является якорь ЭМВ, уменьшается по сравнению с частотой собственных колебаний системы при воздействии на якорь магнитного поля, т. е. снижается жесткость механической системы.  [c.268]

Обычно в качестве резонансной частоты рассматривают частоту собственных колебаний недемпфированного вала, хотя известно, что максимум перемещений получается под влиянием демпфирования при более низкой частоте колебаний. Однако различие между этими двумя частотами колебаний при обычном демпфировании незначительно. В главе (5.05) на одном примере колебаний демп-  [c.267]


При работе по резонансному методу производится наблюдение изменения режима работы излучающего УЗК пьезопреобразователя в момент возникновения стоячих волн, что возможно лишь в случае резонанса, т. е. совпадения частоты внешней возмущающей силы с частотой собственных колебаний системы. При этом между толщиной d изделий и длиной упругой волны в материале изделия должно быть соблюдено соотношение  [c.349]

Определение модулей упругости производится статическими и динамическими методами. Однако в условиях высоких температур статическое нагружение сопровождается неупругими явлениями в материале образца, ползучестью и релаксацией. Установка точных тензометров на образец внутри печи весьма затруднена. Поэтому в современных исследованиях используются динамические методы определения модулей упругости материалов при высоких температурах, основанные на связи частоты собственных колебаний образца с модулями упругости. В исследуемом образце возбуждаются упругие резонансные колебания и измеряется их частота. Зная геометрические размеры образца и его плотность и, пользуясь известными формулами теории колебаний, определяют значения модулей упругости.  [c.449]

Жесткость основного корпуса реактора обеспечивает отсутствие касания корпусов между собой. Однако низшая частота собственных колебаний корпуса реактора (приблизительно 20 Гц) близка к резонансным частотам сейсмических воздействий, что приводит к высокому уровню сейсмических напряжений в корпусе. Необходимо отметить, что принятая расчетная схема позволяет оценивать уровень перемещений более точно, чем уровень напряжений. Для уточнения напряженного состояния корпуса необходимы дальнейшие исследования по уточненным расчетным схемам.  [c.343]

Анализ данных табл. 3 показывает, что для фундаментов машин, имеющих рабочую частоту 50 гц, в диапазоне от нуля до рабочих чисел оборотов зафиксирована частота собственных вертикальных колебаний около 50 гц и выше в вертикальной плоскости. Следовательно, в этой плоскости может быть только один резонансный пик, соответствующий частоте 50 гц. В этом же диапазоне частот в поперечной и продольной плоскостях отмечены две или три частоты собственных колебаний. Например, у фундамента турбогенератора мощностью 100 тыс. кет наблюдались колебания с частотами 4, 17 и 25 гц в поперечной и с частотами 12,5 35 и 50 гц — в продольной плоскостях Таким образом, в обеих указанных плоскостях возможно появление двух или трех резонансных пиков, вызванных совпадением частоты вращения ротора и частоты собственных колебаний фундамента.  [c.31]

На элементах фундамента в вертикальной плоскости отмечается возникновение одного резонансного пика, а в горизонтальной плоскости (поперечной или продольной) — двух или трех. Эти пики обусловлены совпадением частот собственных колебаний фундамента с частотой возмущающей силы, равной числу оборотов ротора турбины. Они отражаются на колебаниях подшипников, вызывая увеличение амплитуд.  [c.37]

В направлении колебаний в горизонтальной плоскости при наличии системы поперечных рам, связанных продольными балками, возможно возникновение двух или трех резонансных пиков, связанных с частотой собственных колебаний фундамента.  [c.41]

В случае, если вычисленная частота собственных колебаний фундамента меньше рабочего числа оборотов машины, нужно увеличить ее, (Приблизив к резонансу. Если же вычисленная частота собственных колебаний фундамента больше рабочего числа оборотов машины, то нуж о уменьшить ее, с тем чтобы приблизить к резонансной зоне. Таким образом, введение расчетного значения частоты собственных колебаний фундамента идет в запас прочности и создает уверенность в надежности расчета.  [c.100]

В Швейцарии и ряде других стран с успехом применяют фундаменты, частота собственных колебаний которых лежит значительно ниже рабочего числа оборотов машины [Л. 4 и 8]. Такое снижение частоты собственных колебаний достигается устройством податливых гибких стоек. Следовательно, во время пуска и остановки машина обязательно проходит резонансную зону колебаний фундамента. Между тем богатейший опыт строительства и эксплуатации этих фундаментов показал, что они работают вполне надежно.  [c.13]

Располагая в механотроне дополнительную обмотку С, по которой пропускается анодный ток механотрона, мы получаем механотронный усилитель с обратной связью. При отрицательной обратной связи мы получаем устройство, отличающееся повышенной стабильностью. В случае использования положительной обратной связи достаточно большой величины мы можем перевести механотронный усилитель, в состояние самовозбуждения, т. е. получаем возможность осуществить механотронный генератор колебаний, частота колебаний которого определяется резонансной частотой собственных колебаний кинематической системы механотрона.  [c.135]

В средней части под мостом размещен дисбалансовый привод 4, который создает направленную продольную вынуждающую силу. При частоте вынуждающей силы, близкой к резонансной частоте собственных колебании системы вагон — мост на упругих опорах, Для приведения комплекса в движение нужны минимальные затраты энергии. По мере высыпания груза из кузова в бункер 7 частота ко-лебаний системы увеличивается. Это требует соответственно увеличения частоты вынуждающей силы. На заключительном этапе выгрузки при частоте колебаний 112—125 1/мин (1,9—2,1 Гц) создаются  [c.154]

Регулирующий клапан начинают постепенно открывать дальше. Частота вращения вала ТВД увеличивается. При 2000 об./мин на ГТК-5 и ГТ-750-6 закроются противопомпажные клапаны, а при 2400—2500 об./мин закроется клапан турбодетандера, отключится расцепная муфта и перекроется пусковой газ. К этому моменту или несколько раньше начнет вращаться вал ТНД. Регулирующий клапан прекращают открывать, когда на механизме задатчика регулятора скорости сработают микропереключатели, сигнализирующие о выходе турбины на режим минимальной нагрузки при частоте вращения вала ТНД 3300 об./мин на ГТК-10 и 3800 об./мин на ГТК-5 и ГТ-750-6. К этому моменту частота вращения вала ТВД обычно достигает - примерно 4400 об./мин, а температура перед турбиной составляет около 600° С. Необходимо только следить, чтобы возрастание частоты вращения по валу ТВД с 2500 до 4200 об./мин было завершено за 2—3 мин. Дальше задеряшваться в указанном диапазоне не разрешается по причине резонансных частот собственных колебаний на некоторых лопатках осевого компрессора. Задержка может произойти не из-за нарушения режима пуска, а по причине несвоевременного вступления в работу ограничителя приемистости. В этом случае следует отрегулировать его работу за счет перестановки золотника 30 (см. рис. 4) вверх по резьбе по серьге 26.  [c.122]

Как видим, частоты практически совпадают, т. е. в системе долишо возникать резонансное состояние. Наиболее простым выходом из создавптегося положения является замена профиля другим номером по стандарту, т. е. изменение жесткости балок EJ. Удобнее при этом облег чить подвеску и взять меньший ио.мер профиля. Возьмем, например, швеллер № 8 (7 = 89,4 см ). Тогда для круювой частоты собственных колебаний получаем  [c.472]

Эти экспериментальные результаты никак нельзя объяснить, оставаясь в рамках классической физики. Действительно, предположив, что электрон вылетает из металла под действием све ТОБОЙ волны, нужно рассматривать ее как некоторую вынуждающую силу, амплитуда которой должна определять максима.льную скорость вылетевших электронов. Следовате.ньно, Кзщ должно быть пропорциональным световому потоку, а в эксперименте, как уже указывалось, установлено отсутствие такой зависимости. Непонятна также зависимость Уз д от частоты падающего света. Казалось бы, эффект должен иметь резонансный характер и наблюдаться лишь в том случае, когда частота собственных колебаний электрона в металле совпадает с частотой падающего света. Между тем эффект усиливается при v v p, а наблюдавшиеся в некоторых условиях максимумы зависимости силы фототока от частоты облучающего катод света появляются лишь н специальных условиях эксперимента и не должны влиять на установление основного механизма процесса.  [c.433]


Резонансные потери возможны и в твердых веществах, если частота нынужденных колебаний, вызываемых электрическим полем, совпадает с частотой собственных колебаний частиц твердого вещества. Наличие максимума в частотной зависимости tg б характерно также и для резонансного механизма потерь, однако в данном случае температура не влияет на положение максимума.  [c.49]

Обсуждаемый здесь резонанс, называемый параметрическим, возникает вследствие изменения параметра системы (в данном случае сжимающей силы). В отличие от обычного резонанса, имеющего место при совпадении частот собственной и вынуждающей сил, параметрический резонанс возникает при совпадении возбуждающей частоты с удвоенной частотой собственных колебаний (главный резонанс). Во-вторых, возбуждение резонансных колебаний возможно при частотах, меньщих, чем частота главного резонанса. В-третьих,  [c.463]

Инерционный принцип силовозбуждения, примененный в указанной выше машине для испытаний при неоднородном напряженном состоянии, был использован также для нагружения образцов осевыми усилиями (растяжение—сжатие) [ 5]. Так как при испытаниях на растяжение—сжатие необходимо воспроизведение значительных усилий (в рассматриваемой установке до 4000 дан), скорость вращения неуравновешенных масс была выбрана значительной — 2500—3600 об1мин для основной гармоники и 6100—7500 об1мин для высокочастотной (мг i = 2 1 и 3 1). При этом высокочастотная составляющая оказалась в резонансной области, так как частота собственных колебаний упругой системы машины составляла 6050—6100 циклов в минуту. Такое явление неблагоприятно сказывается на стабильности режима нагружения образца как в ироцеесе испытаний, так и в особенности при переходе через резонанс. В связи с этим большое (внимание авторы вынуждены бьши уделить вопросам исследования динамических характеристик машины и стабилизации амплитуды напряжений.  [c.128]

В сложных колебательных системах со многими степенями свободы, какими являются конструкции машин с присоединенными опорными и неопорными связями, в диапазоне частот действия возмущающих сил всегда имеется большое количество частот собственных колебаний. Задачей является исключение возможности совпадения частот вынужденных и собственных колебаний, которые могут проявиться при действии на конструкции данной системы сил. Только в такой постановке могут быть получены определенные положительные результаты. Поэтому при исследовании резонансных характеристик конструкций машин необходимо иметь четкое представление о системе действующих в машине вибрационных сил и онределять реакцию конструкций именно по отношению к такой (или близкой к ней) системе сил. 424  [c.424]

U практике стендовых испытаний на виброустойчивость наибольшее применение находит прямой способ определения частоты собственных колебаний конструкций, который заключается в выявлении резонанса и фиксировании частоты возмущающих колебаний. Однако этот способ несовершенен, так как из-за демпфирующих свойств конструкции резонансная. частота элементов может отличаться от частоты возбуждения вибрации возможно также появление параметрических резонансов кроме того, на высоких частотах амплитуды колебаний имеют малые значения, и выявить резонансы прямыми методами трудно. Тем не менее, несмотря на малые амплитуды колебаний, механические напряжения в опасных местах крепления элементов или в самих элементах при резонансе могут значительно превьшшть предел выносливости и привести к выводу аппаратуры из строя. Однако некоторые элементы конструкции, например защитные кожухи, могут испытывать очень большие перегрузки при резонансах и в то же время резонансные эффекты этих элементов не нарушают работоспособность аппаратуры. Вследствие этого возникают определенные трудности при выявлении резонансных эффектов и результатов их действия на аппаратуру при испытаниях на виброустойчивость.  [c.285]

Возбуждение продольных колебаний стержней осуществляют электромагнитными, электродинамическими, пьезоэлектрическими или электростатическими возбудителями колебаний. Возбудитель колебаний устанавливают около одного конца стержня, на другом его конце располагают обратный преобразователь, преобразующий механические колебания стержня в электрические — датчик частоты колебаний и амплитуды вибросмещения. На резонансе при совпадении частоты возбуждающей силы с частотой собственных колебаний стержня благодаря высокой добротности колебательной системы амплитуда вибросмещения резко возрастает. Это обстоятельство используют для определения резонансных частот.  [c.136]

Преимущества электромагнитной резонансной установки следующие проведение испытаний в две стадии - до момента образования трещины (минимальная регистрируемая трещина - 1% площади сечения образца) и цальнейший контроль за изменением частоты собственных колебаний образца роста трещины до условного разрушения (образование трещины площадью - 80% сечения образца)  [c.139]

Фундаменты для турбогенераторов воспринимают не только статическую, но и динамическую нагрузку, с которой особенно приходится считаться при работе их в резонансной зоне. Первоначально динамическая работа фундамента учитывалась введением в расчет веса турбоагрегата, увеличенного в 5 раз [Л. 1]. До тех пор, пока применялись низкооборотные турбоагрегаты (до 1 500 об мин), такой метод расчета хотя и приводил к постройке громоздких фундаментов, однако был приемлем, так как частоты собственных колебаний значительно отличались от рабочих чисел оборотов агрегата и явление резонанса не проявлялось. С увеличением же чисел оборотов турбоагрегатов У фундаментов стали проявляться явления резонанса. Это вызвало необходимость проведения динамических расчетов фундаментов. В связи с этим появляются труды Гейгера, Эллерса, Бейера. Некоторые из них были опубликованы -в русском переводе в сборнике, изданном под редакцией Е. Л. Николаи (Л. 2].  [c.5]

Анализ амплитудно-частотных характеристик и спектра частот собственных колебаний показал, что в вертикальной плоскости в диапазоне от нуля до рабочих чисел оборотов турбогенератора отмечено возникновение одного резонансного пика, связанного с частотой собственных колебаний фундамента. Этот пик обычно находится вблизи рабочих чисел оборотов машины. Изменяя частоту собственных колебаний фундамента, мы можем изменять положение этого пйка относительно рабочего числа оборотов. На фундаменте возможно появление еще одного резонансного пика, который значительно удален от рабочих чисел оборотов машины и основного резонансного пика фундамента. Он имеет частоту колебаний около 10 гц, соответствующую колебаниям фундамента как массива, находящегося на упругом основании. При этой частоте колебаний возмущающие силы весьма незначительны и резонансная амплитуда очень мала. Поэтому возникновения этого пика можно не учитывать в расчете.  [c.39]

Требование норм об удалении частоты собственных колебаний на 20% от зоны рабочих чисел оборотов машины по сути дела переводит работу фундамента из динамической области в статическую, так как динамический коэффициент в этом случае принимает значение, близкое к еяинице. Таким образом, фундамент, имеющий частоты собственных колебаний, удаленные от резонансной зоны, находится в нормальных условиях работы. Расчетом же на вынужденные колебания обеспечивается необходимая жесткость конструкции.  [c.14]

Анализ данных табл. 2-3 наказывает, что для фундаментов машин с рабочей частотой колебаний 50 гц в диапазоне от пуля до рабочих чисел оборотов зафиксирована частота собственных вертикальных колебаний около 50 гц и выше. Следовательно, в этой плоскости может быть только один резонансный пик, соответствующей частоте 50 гц. В этом же диапазоне частот колебаний в поперечной и продольной плоскостях отмечены две или три частоты собственных колебаний. Натример, у фундамента турбогенератора мощностью 100 тыс. кет наблюдались колебания с частотами 4,17 и 25 в поперечной и с частотами 12,5 35 и 50 гц — в продольной плоскостях.  [c.51]

Таким обраво м, в обеих указанных плоскостях возможно появление двух или трех резонансных пиков, вызванных совпадением частоты вращения ротора и частоты собственных колебаний фундамента. Анализ ма-4 51  [c.51]


Смотреть страницы где упоминается термин Резонансные частота собственных колебани : [c.61]    [c.45]    [c.249]    [c.221]    [c.13]    [c.62]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.482 ]



ПОИСК



Колебания резонансные

Колебания собственные

Резонансные

Частота колебаний

Частота колебаний (частота)

Частота колебаний резонансная

Частота колебаний собственная

Частота резонансная

Частота собственная

Частоты собственных колебани



© 2025 Mash-xxl.info Реклама на сайте