Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление аэродинамическо

Расчет сопротивления аэродинамической трубы (рис. 1-23)  [c.56]

Совместная работа насосов на общую сеть 438 Соединение труб тройниковое 498 Солесодержание 552 Сопротивление аэродинамическое 623  [c.643]

Практическое значение изложенных в этом параграфе условий подобия заключается в том, что они позволяют установить, от каких безразмерных параметров зависят величины, характеризующие аэродинамику данного тела (его сопротивление, аэродинамический момент, распределение давлений и т. д.). Мы видели, например, что коэффициент сонротивления трубы X зависит от числа Рейнольдса.  [c.460]


Измерение аэродинамического сопротивления. Аэродинамическое сопротивление оребренной трубки равно разности статических давлений в начале и конце рабочего участка. При незначительном сопротивлении входного коллектора (коэффициент сопротивления = 0,02) статическое давление перед оребрением практически равно барометрическому поэтому в опытах без ощутимой погрешности аэродинамическое сопротивление определялось как разность барометрического давления и статического в конце рабочего участка. Перепад давлений в зависимости от его величины измерялся либо U-образным манометром 7, либо микроманометром 8. Относительная погрешность в определении перепада не превосходила 1-1,5%.  [c.118]

Физически продуваемый снизу плотный слой частиц теряет устойчивость потому, что сопротивление фильтрующемуся сквозь него газу становится равным весу столба материала на единицу площади поддерживающей решетки. Поскольку аэродинамическое сопротивление есть сила, с которой газ действует на частицы (и соответственно по третьему закону Ньютона —частицы на газ), то при равенстве сопротивления и веса слоя частицы (если рассматривать идеальный случай) опираются не на решетку, а на газ.  [c.143]

В реальных условиях все процессы в ГТУ являются неравновесными, что связано с потерями работы в турбине и компрессоре, а также с аэродинамическими сопротивлениями в тракте ГТУ. На рис. 20.10 действительный процесс сжатия в компрессоре изображен линией /—2, а процесс расширения в турбине — линией, 3—4. Точками 2а и 4а отмечено состояние рабочего тела соответственно в конце равновесного адиабатного сжатия и расширения, точкой О — параметры окружающей среды.  [c.174]

Исследование аэродинамического сопротивления этих двух правильных укладок с одинаковым значением т = 0,259 пока-  [c.52]

Шар, к которому по форме приближаются многие твердые компоненты потоков газовзвеси, является плохо обтекаемым телом. Безотрывное обтекание сохраняется лишь при невысоких числах Rex, а положение точки отрыва пограничного слоя от поверхности зависит от режима обтекания, т. е. от Ret- Соответственно меняется и закон сопротивления, который оценивается коэффициентом аэродинамического сопротивления Сш, учитывающим как силы трения, так и разность сил давления в лобовой и кормовой частях шара.  [c.47]

Рис. 2-2. Зависимость коэффициента аэродинамического сопротивления частиц от Rex. Рис. 2-2. Зависимость коэффициента аэродинамического сопротивления частиц от Rex.
Определив экспериментально Va, можно затем оценить коэффициент аэродинамического сопротивления по выражению (2-1)  [c.50]

При противоточном падении частиц в камере с тормозящими элементами общий коэффициент аэродинамического сопротивления можно оценить по правилам оценки местного сопротивления, представив его как сумму трех слагаемых  [c.131]


Коэффициент аэродинамического сопротивления, вызванного наличием движущейся насадки,  [c.134]

На рис. 5-7 четко различаются две области теплообмена переходная область при 50400- 500. Эти границы согласуются с диапазоном первой переходной и автомодельной областей аэродинамического сопротивления движущихся частиц неправильной формы (гл. 2).  [c.165]

Величина А в формуле (6-17) раскрыта на основе обработки данных работ [Л. 225, 309, 362, 380], поскольку в них наряду с теплообменом изучалось и аэродинамическое сопротивление (см. 6-11).  [c.191]

Для флюидных дисперсных потоков, формирующихся при 0,03<р<0,3, обобщенные зависимости по аэродинамическому сопротивлению практически отсутствуют. Видимо, они займут промежуточное положение между выражениями для пневмотранспорта и для транспорта плотным слоем. Вопросы аэродинамического расчета кратко рассматриваются в (Л. 255, 289, 322]. По данным [Л. 225,] для 60<р,<242 (р = 0,035-0,15), Re = 3 000-  [c.249]

В зависимостях (8-16)—(8-18) удивляет полное отсутствие скоростей компонентов потока газа и твердых частиц. Из предыдущего анализа данных об аэродинамическом сопротивлении и теплообмене известно влияние на них чисел Рейнольдса и Фруда для компонентов потока. В рассматриваемой обработке они отсутствуют, хотя пределы изменения плотности смеси охватывают и обычный пневмотранспорт. Наличие числа Ргв в формуле (8-18) не исправляет положения, так как этот критерий построен не по абсолютной, а по взвешивающей скорости движения частиц. Само определение этой скорости в [Л. 51] по закону Стокса также вызывает серьезные возражения. Дело не только в том, что, частицы, близкие к верхней границе указанных пределов (dt 0,45 мм), никак не подчиняются закону Стокса. Более важна сильная зависимость взвешивающей скорости от объемной концентрации. При концентрациях, охватываемых формулой (8-18), возможно значительное (в 2 и более раз ) падение скорости Va по сравнению 260  [c.260]

Для расчета аэродинамического сопротивления восходящего плотного слоя выражение (4-36 ) упрощается и видоизменяется. Коэффициентом сопротивления чистого газа можно пренебречь. Тогда, по-прежнему относя для удобства расчета коэффициенты сопротивления к скорости несущей фазы, определенной на полное входное сечение, имеем  [c.280]

Помимо задач выравнивания неоднородных потоков в аппаратах и других различных устройствах, часто возникает необходимость преобразовать одну форму профиля скорости в другую. Например, в аэродинамических трубах с равномерным (прямолинейным) потоком иногда требуется создать для испытуемой в рабочей части модели кинематически подобную схему полета по кривой траектории. Этого можно достичь [26, 37], во-первых, изогнув особым образом модель и, во-вторых, создав поперек рабочего сечения трубы постоянный градиент скорости. Такое распределение скоростей может быть получено, например, при испытании решетки с переменным по сечению сопротивлением (переменной густотой).  [c.11]

Однако многочисленные наблюдения и исследования показывают, что при определенных условиях роторы начинают вибрировать и при скоростях, отличных от критических.. 9ти гямовоз-буждающиеся колебания не связаны непосредственно с наличием неуравновешенности или других возмущающих воздействий. Причинами, вызывающими эти вибрации, являются силы трения между поверхностями движущихся твердых тел, силы внутреннего трения в материале, силы сопротивления аэродинамического и электромагнитного происхождения и т. д. Эти силы в зависимости от характера их действия, скорости вращения ротора и ряда других причин могут или стабилизировать движение и ограничивать амплитуды колебаний при резонансе, или, наоборот, вызывать раскачку колебаний. По существу их нельзя называть силами сопротивления, так как при одном виде движения они могут быть силами сопротивления, при другом — движущими силами. Исследованию этих вопросов посвящена обширная отечественная и зарубежная литература.  [c.196]

Коэффициент сопротивления диффузора определяется выражением (388), в котором угол р находится по формуле (391) при к = . Перейдем теперь к оценке обратного сопротивления аэродинамического клапана. Это сопротивление складывается из сопротивления конфузора, расширения потока в камере, входа, и расширения потока за сжатым сечением с — с. Следовательно, коэффициент обратного сопротивления может быть представлен как сумма коэфпциептов перечисленных сопротивлений  [c.283]

Поляра самолета, определяемая величинами и Л, изменяется в зависимости от внешней конфигурации самолета. Подвеска внешних объектов типа ракет и бомб, выпуск шасси, закрылков, тормозных щитков и т. п. могут привести к существенным изменениям величины коэффициента лобовош сопротивления, аэродинамического качества, а также к изменениям несущих свойств и других характеристик самолета. Так, например, за счет подвески внешних объектов, которые увеличивают коэффициент самолета на величину ДС , относительное изменение максимального аэродинамического качества /Стах и наивыгоднейшего коэффициента подъемной силы может быть оценено по сле-  [c.22]

Более полное использование теплоты продуктов сгорания привело к значительному снижению температуры уходящих газов, и установка дополнительных поверхностей нагрева (водяного экономайзера и воздухоподогревателя) и золоуловителей увеличила аэродинамическое сопротивление тракта уходящих газов. В этих условиях удаление газов стало возможным только за счет работы дымососа, а функция дымовой трубы свелась к рассеянию вредных веществ (золы, токсичных газов) с больщой высоты по-возможности над большей территорией для уменьщения их концентрации.  [c.217]


Бернштейн Р. С., Померанцев В. В., Шагалова С. Л. Обобщенный метод расчета аэродинамического сопротивления загруженных сечений.—Там же, с. 267.  [c.109]

Коэффициент аэродинамического сопротивления винтовых сетчатых вставок вс на основе полученных в [Л. 21] опытных данных три / = 0,30- 0,66% dold = = 3,35н-7,7 Re = (1,98 3,2) 10 , п = 5,33 может быть определен по формуле  [c.134]

Согласно данным гл. 2 о коэффициентах аэродинамического сопротивления (рис. 2-7), кварцевые частицы, использованные в опытах по теплообмену А. М. Николаевым и 3. Ф. Чухановым, Г. Н. Худяковым н 3. Ф. Чухановым, 3. Р. Горбисом [Л. 222, 307, 71], относятся к первой группе неправильных частиц. Поэтому коэффициент геометрической формы этих частиц принимается равным 1,2. При обработке данных [Л. 71] в области Re<200 учтены изменения, связанные с уточнением данных о коэффициенте сопротивления кварцевых частиц, использованных, в этой работе.  [c.162]

Несмотря на определенное восполнение наших знаний о флюидных дисперсных потоках, последние нуждаются в специальных и всесторонних исследованиях. В первую очередь важно детально выяснить качественные изменения в структуре системы. Здесь при повышенных концентрациях необходимо в новых условиях вернуться к проблеме возможного вырождения турбулентности несущей среды, к задаче о распределении локальной и средней истинных концентраций, к необходимости оценить вид и значение критического и оптимального обобщающего критерия (включающего и соответствующие концеИтрации), к методам расчета аэродинамического сопротивления и реологических свойств системы и пр. Иначе говоря, лишь знание гидромеханических свойств флюидных потоков позволит надежно и на основе достаточно общих закономерностей вести их расчет в качестве массо- и теплоносителей. Важность этих задач определяется тем, что именно здесь возможно 264  [c.264]

При этом скорость СЛОЯ, обеспечивающую движение в режиме плотного слоя, следует проверить по критическому числу Фруда Ргкр (гл. 9), а потерю давления можно рассчитывать по данным, приведенным в гл. 9. Диаметры теплообменных камер зависят от выбора величины скорости газа. Для камер типа слой эта величина в основном ограничивается допустимым аэродинамическим сопротивлением. Для прямоточных аппаратов типа газовзвесь скорость газа ограничена условиями беззавальной работы, а в противоточных — коэффициентом аэродинамического торможения А = у/ув, который должен быть из-за опасности уноса частиц меньше еди-  [c.363]

Обнаружено, что в изотермических и неизотермических условиях сопротивление движущегося слоя практически не зависит от его скорости и близко к аэродинамическому сопротивлению неподвижного слоя с такой же пористостью. Режимные характеристики теплообменника расход греющих газов Gi = 300 2 ООО кг/ч расход нагреваемого воздуха 02 = 50 800 кг/ч расход насадки Gx = 200- 2 ООО кг/ч средние температуры греющих газов на входе / i =б00ч-1 400° С температуры нагрева насадки f x = 600-b 1 200° С температуры воздуха /"2 = = 200-ь980°С средние скорости фильтрации i = 3-v-8 л/се/с, воздуха г 2 = 0,5- 6,2 м1сек, насадки г т = 0,05-  [c.380]

Для котла ТП-230 в ОТИЛ был проведен расчет компоновки всей конвективной части котла при замене газового обогрева обогревом кварцевым дисперсным теплоносителем. Согласно рис. 2-3 продукты сгорания топлива после пароперегревателя должны направляться не в опускную шахту, как обычно, а вверх — в камеру свободной газовзвеси, которая является не только противо-точной камерой нагрева дисперсной насадки, но и существенной частью дымовой трубы. При этом аэродинамическое сопротивление оо газовому тракту падает (до 130 кг м ), так как сопротивление противоточ-  [c.387]

Стремление уменьшить поверхности регенераторов газотурбинных установок иривело к ряду схем с использованием промежуточного дисперсного теплоносителя. Разработка предложенной автором схемы по рис. 12-1 для ГТУ-50-800 показала принципиальную возможность уменьшения требуемой поверхности нагрева, заметного снижения аэродинамического сопротивления по газовому тракту и достижения компактности при расположении камеры газовзвеси в вытяжной дымовой трубе. Габаритные характеристики улучшаются заметно, если рекуперативную камеру для нагрева воздуха расположить над камерой противоточной газовзвеси.  [c.389]

В раздающих коллекторах постоянного или переменного сечения с обычными ответвлениями (рис. 10.42) даже при выборе характеристики коллектора 4 = I 1 — ькР/к. обеспечивающей равномерное распределение скоростей (расходов) по всем ответвлениям, концентрация взвешенных в потоке частиц, особенно грубой пыли, распределяется неравномерно. Так как частицы обладают малым аэродинамическим сопротивлением, ответвляющийся поток не может их полностью увлечь за собой. Только в конце колл(жтора частицы, ударяясь о заглушенную стенку, теряют скорость и подхватываются потоком, идущим в последнее ответвление. Таким образом, в коллекторах указанного типа концентрация пыли в первых ответвлениях значительно меньще, чем в последнем, что не всегда желательно. Чтобы получить равномерное распределение взвешенных в потоке частиц, необходимо притормаживать их движение перед каждым ответвлением. Для этого можно использовать, например, устройство, изображенное на рис. 10.42, в. Внутри коллектора у каждого ответвления с помощью плавных козырьков, установленных над выходным отверстием, отсекается некоторая доля иылегазового потока. В работе [157] предложено выиустигь из боковых ответвлений в коллектор скошенные концы  [c.320]


Смотреть страницы где упоминается термин Сопротивление аэродинамическо : [c.410]    [c.7]    [c.462]    [c.128]    [c.152]    [c.314]    [c.149]    [c.34]    [c.725]    [c.6]    [c.53]    [c.135]    [c.237]    [c.241]    [c.252]    [c.276]    [c.286]    [c.302]    [c.379]    [c.388]   
Двигатели Стирлинга (1986) -- [ c.74 , c.359 ]



ПОИСК



Аэродинамический шум

Сопротивление аэродинамическое



© 2025 Mash-xxl.info Реклама на сайте