Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрица большая сопротивлени

Магнуса сила 424, 427 Маделунга постоянная 458 Матрица большая сопротивлений 472, 473  [c.615]

Большое сопротивление росту трещины в направлении нагружения, наблюдаемое у композитов с ортогональной схемой армирования [0°/90°]s, вызвано высоким модулем материала в поперечном направлении и стеснением касательных деформаций у вершины надреза волокнами слоев, ориентированных в направлении 90°. Даже в процессе усталостного нагружения при разрушении образуются микротрещины в матрице, а волокна, ориентированные перпендикулярно направлению нагружения, остаются целыми. Можно считать, что явление распространения трещины в композитах этого типа хорошо изучено, несмотря на то, что результаты расчетов совпали с экспериментом скорее качественно, чем количественно.  [c.79]


Например, при вытяжке очагом деформаций является фланец, а зоной, передающей усилие в очаг деформаций,— вертикальная стенка. Степень формоизменения заготовки при вытяжке ограничивается прочностью опасного сечения в передающей зоне. Если размеры заготовки слишком большие по отношению к диаметру матрицы, то сопротивление деформированию очага деформаций будет настолько велико, что заготовка оборвется по опасному сечению. Если же фланец нагреть, а стенку оставить холодной, то при той же несущей способности опас-  [c.242]

Можно заключить, что сопротивление ползучести эвтектической композиции должно контролироваться прочной волокнистой фазой, которая действует так, как если бы она была непрерывной по длине. Это не следует интерпретировать таким образом, что выбор матрицы не является важным при разработке эвтектических композиций. Чем большим сопротивлением ползучести обладает матрица, тем меньшую нагрузку она передает упрочняющей фазе. Упрочнение матрицы эвтектик волокнистого строения можно осуществить и без изменения состава, уменьшая расстояние между волокнами, которые противодействуют течению матрицы, тем самым повышая ее сопротивление усталости [5].  [c.142]

Малые значения прочности и жесткости КМ в направлении, перпендикулярном расположению волокон, при растяжении объясняются тем, что в этом случае, так же как при сжатии и сдвиге, они определяются свойствами матрицы. Большую роль играет матрица в сопротивлении КМ  [c.446]

Данные, приведенные в табл. 2, относятся к однофазным микроструктурам. В многофазных микроструктурах также можно установить соответствие между механическими свойствами и размером зерен (фиг. 17). Как правило, уменьшение частиц дисперсной фазы увеличивает сопротивление пластической деформации. Это утверждение справедливо при условии, лто дисперсная фаза имеет большее сопротивление пластической деформации, чем матрица ). Более подробно механические свойства двухфазных сплавов обсуждаются ниже (см. ФМ-3, гл. VI).  [c.421]

Радиусы закругления рабочих кромок матриц и пуансонов гибочных штампов. Радиусы закругления рабочих кромок матрицы оказывают влияние на усилие гибки, на качество изгибаемых деталей, а также на стойкость штампов. Чем меньше радиус закругления матрицы гибочного штампа (главным образом у двухугловых штампов), тем больше усилие гибки ввиду уменьшения, с одной стороны, плеча гибки, а с другой, вследствие большого сопротивления скольжению (контактного трения) изгибаемого металла по матрице.  [c.35]

Вытяжка с подогревом фланца. Сущность этого способа заключается в том, что путем нагрева уменьшают сопротивление деформированию фланца заготовки, сохраняя неизменной прочность дна. Это позволяет при одном и том же напряжении в опасной зоне изделия втягивать в матрицу больший объем металла, т. е. улучшать коэффициент вытяжки. Вытяжка с подогревом применяется в настоящее время для алюминиевых и магниевых сплавов, требующих сравнительно невысокой температуры нагрева. Этот способ незаменим при вытяжке магниевых сплавов, так как без нагрева они не поддаются штамповке.  [c.168]

Радиусы на матрице оказывают влияние не только на величину усилия при гибка, но и на качество поверхности деталей. Чем меньше радиус на матрице, тем больше усилие гиба вследствие большого сопротивления скольжению изгибаемого материала по матрице.  [c.175]


В дисперсно-упрочненных материалах матрица несет основную нагрузку. Дисперсные частицы препятствуют движению дислокаций в металлической матрице. Степень упрочнения матрицы пропорциональна сопротивлению, оказываемому частицами движению дислокаций. Дислокационная теория — главное средство объяснения механизма деформации материалов, в которых расстояние между частицами (I) много больше размера частиц (d). Поведение подобных сплавов при деформации достаточно хорошо изучено (например, [3]).  [c.188]

По сравнению с закаливаемыми на мартенсит сталями, содержащими углерод, безуглеродистые мартенситно-стареющие стали при той же прочности отличаются несравненно большим сопротивлением хрупкому разрушению. Это — важнейшее их преимущество. Причины высокого сопротивления хрупкому разрушению в закаленном состоянии рассмотрены в 37. При отпуске на максимальную прочность показатели пластичности и ударная вязкость снижаются, но остаются еще весьма высокими. Вязкость матрицы, не содержащей углерода, и высокая дисперсность однородно распределенных выделений интерметаллидов обусловливают очень большую сопротивляемость распространению трещин, а это — ценнейшая характеристика современного высокопрочного конструкционного материала.  [c.355]

I — червяк с глубоким каналом и короткой дозирующей зоной, 2 — головка с матрицей большого сечения (малое сопротивление), 3 — червяк с мелким каналом и длинной дозирующей зоной, 4 —червяк с глубоким каналом и длинной дозирующей зоной. 5 — головка с матрицей малого сечения (большое сопротивление)  [c.146]

Физическая природа неустойчивости объясняется тем, что сопротивление матрицы потоку пара во много раз больше, чем потоку жидкости. Поэтому незначительное изменение положения области испарения внутри пористой стенки вызывает заметное изменение гидравлического сопротивления, что при постоянном перепаде давлений на стенке приводит к существенному изменению расхода охладителя. Так продолжается до тех пор, пока граница зоны испарения не выходит за пределы проницаемой матрицы.  [c.132]

Величина т вообще неизвестна, и пути ее экспериментального определения неясны. Во всяком случае она меньше, чем сопротивление композита разрушению при сдвиге. Принимая т = = 2 кгс/мм , о = 240 кгс/мм (ориентировочные оценки для углепластика), получим при d = 10 мкм, Zo = 0,3 мм. При разрыве композита поверхность разрыва напоминает щетку, из разлома матрицы, как щетинки, торчат кончики оборванных волокон. Средняя длина этих вытянутых кончиков равна неэффективной длине волокна. Результаты таких измерений показывают, что величина неэффективной длины в сильной степени зависит от технологии изготовления композита, определяющей величину т в формуле (20.5.5), для композитов углерод — эпоксидная смола величина 1а может достигать 0,5—1 мм. При этой длине большая дисперсия прочности волокон приводит к снижению прочности пучка за счет коэффициента реализации к, определяемого формулой (20.4.4), который не перекрывается увеличением средней прочности вследствие масштабного эффекта.  [c.699]

Каждая из этих особенностей в отдельности представляет собой фактор, который не обнаруживается в конструкционных металлах в той степени, в которой он имеется в большинстве волокнистых композитов. В сочетании друг с другом эти особенности обусловливают беспрецедентную сложность усталостного поведения композита, но они также обеспечивают и беспримерные возможности конструирования материалов с более высоким сопротивлением усталости. Наличие вязкой матрицы приводит к еще большему различию усталостного поведения композитов с металлической матрицей и большинства композитов с полимерной матрицей.  [c.396]

В волокнистых металлических композитах, за исключением композитов с направленной эвтектикой, волокно и матрица, как правило, не находятся в состоянии химического равновесия. Из всех факторов, воздействующих на усталостную прочность композита, вероятно, самым малопонятным является влияние прочности и микроструктуры на границе раздела волокна и матрицы. Увеличение прочности происходит в результате того, что посредством касательных напряжений усилия передаются через границу раздела волокна и матрицы, и высокомодульные волокна несут большую часть приложенных параллельно им нагрузок. Поверхности раздела играют и другую важную роль в сопротивлении разрушению, контролируя вид распространения трещин они могут отклонять распространяющиеся трещины и задерживать рост трещин.  [c.396]

При получении композиционных материалов на песчаном грунте листы часто имеют коробление и шероховатую поверхность. При деформировании композиционного листа на таком основании из-за значительного прогиба в материале появляются большие касательные напряжения вследствие относительного сдвига металла матрицы и волокна, обладающих разными пластичными характеристиками. Величина этих напряжений может превышать прочность связи волокна с матрицей, что иногда приводит к образованию непроваров, снижающих прочность композиции. Однако металлическая плита в качестве основания имеет и свои недостатки, так как в этом случае отраженная волна, интенсивность которой составляет более 20% интенсивности падающей ударной волны, создает на границах раздела между слоями матрицы значительные растягивающие напряжения. Это может приводить к образованию локальных дефектов, также снижающих прочность композиции. Более благоприятные условия сварки, обеспечивающие высокую прочность соединения, создаются при использовании в качестве основания плиты из материала, имеющего достаточно высокую жесткость в сочетании со сравнительно низким акустическим сопротивлением.  [c.161]


При получении композитов могут быть использованы самые различные сочетания материалов матрицы и наполнителя. Поэтому следует учитывать, что рассмотрение композита с точки зрения механики зависит от материалов, из которых он построен. Однако следует иметь в виду, что в каждом конкретном случае приемы изучения композитов не отличаются от соответствующих методов, с которыми приходилось иметь дело ранее в материаловедении и сопротивлении материалов. В настоящее время существует большое количество технологий получения композитов и разработаны соответствующие методики исследования механического поведения этих материалов.  [c.22]

Сопротивление удару. Сопротивление материалов быстроменяющимся деформациям отлично от сопротивления деформациям, протекающим с малой скоростью. Вследствие громоздкости макромолекул полимерной матрицы фрикционного материала перемещение и перестройка их взаимного расположения в значительном объеме требуют известного промежутка времени. При большой скорости деформации протекание процессов перестройки запаздывает, поэтому фрикционные полимерные материалы при динамических испытаниях разрушаются хрупко, почти без остаточных деформаций.  [c.254]

В настоящей работе предлагается способ, позволяющий решать описанные выше задачи без итерационной процедуры [132]. Способ отталкивается от известного факта, что искривление плоских сечений в балке (или другой конструкции) обусловлено наличием сдвиговых деформаций [195, 229]. Чтобы получить плоское сечение, необходимо исключить деформацию сдвига. Для этого нами предлагается при аппроксимации КЭ регулярного участка конструкции на его торце (см. рис. 1.2, сечение 1—2) ввести специальный тонкий слой КЭ, обладающих большим сопротивлением сдвигу и, следовательно, исключающих такого рода деформацию. Сделанное предположение сводится к модификации матрицы [/)], связывающей векторы напряжений а и приращений деформаций Ае (см. позраздел 1.1) посредством умножения на большое число d ее элемента Озз. Например, для плоской деформации в уравнении (1.17), связывающем а и Ае , модифицированная матрица [D] будет идентична матрице [Z)], за исключением члена 0 =Вззй =  [c.29]

Прево и Маккарти [18] проводили испытания композитов А16061—борсик, в которых матрица, полученная путем плазменного напыления, обладала более совершенной связью, а волокна— большим сопротивлением расщеплению. Пластины А16061—борсик были изготовлены горячим прессованием слоев ленты, полученной плазменным напылением, с последующей термической обработкой для старения матрицы. Авторы отметили, что поперечная прочность композитов с волокнами диаметром 100 мкм была ниже, чем у композитов с волокнами диаметром 140 мкм. Поперечная прочность композитов с волокнами меньшего диаметра составляла около 15 кГ/мм и определялась, в основном, расщеплением волокон, а не разрушением по поверхности раздела. Композиты с волокнами большего диаметра обладали поперечной прочностью около 25 кГ/мм2 при этом разрушалась, главным образом, матрица, а разрушение по поверхности раздела и расщепление волокон играли незначительную роль. Как отмечают авторы, высокие значения поперечной прочности обусловлены хорошей связью между лентами, полученными плазменным напылением, что, в свою очередь, приводит к прочной связи как в пределах собственно матрицы, так и между волокном и матрицей.  [c.225]

Металлические матрицы предпочтительнее в случае, когда деталь работает на сжатие и изгиб, так как их более высокая прочность на сдвиг и изгиб обеспечивает ослабление поперечных нагрузок на волокна. Эти матрицы также более эффективны в случае местных, комбинированных и внеосевых нагрузок, у них большее сопротивление износу, меньше газопроницаемость и более высокая температурная стойкость. Отличная теплопроводность позволяет избегать местного перегрева, высокая электроцроводность обеспечивает хорошую заш,иту от повреждения молнией (слоистые материалы на полимерной основе, используемые в авиации, должны иметь алюминиевое покрытие толщиной до 0,13 мм с целью заш иты от удара молнии). Более высокая электропроводность металличе-  [c.92]

Механизм наблюдаемого хемомеханического эффекта, исходя из теоретических и экспериментальных данных, можно представить следующим образом. Первоначальный пластический накол обусловил образование зародышей двойников сдвига, которые затем росли вследствие перемещения двойникующих дислокаций. связанного с химическим растворением поверхности кристалла, понижающим поверхностный потенциальный барьер и облегчающим движение этих дислокаций (хемомеханический эффект для двойникового сдвига). Полные дислокации, юзникавшие в матрице при деформировании, взаимодействовали с двойниковыми (в частности, препятствовали росту двойника, вызывая большие локальные напряжения), но, испытывая з>начительно большее сопротивление движению  [c.127]

Для борных волокон характерно упругое деформационнонапряженное поведение при низких температурах и большое сопротивление ползучести при повышенных температурах. Максимальная допустимая температура формообразования боралюминия в твердом состоянии не превышает 600° С, волокна при этом претерпевают очень малые пластические деформации до разрушения. Максимальное удлинение материала при разрушении составляет менее 1% (Крейдер). Матрица же обладает высокой пластичностью при малом уровне напряжений уже при 400° С это обеспечивает некоторую возможность формоизменения материала в целом в условиях, когда деформация осуществляется только за счет сдвига матрицы.  [c.199]

Острие кромки, углы матрицы, заусеничные каналы, мостики, вертикальные стенки оказывают большое- сопротивление течению материала н оно затрудняется.  [c.14]

Сильное охрупчивающее действие на литой вольфрам оказывают также крупные выделедия карбида Wg . Легирование вольфрама цирконием, гафнием, ниобием, танталом приводит к снижению Гхр. Образование при этом дисперсных прочно связанных с матрицей карбидов МеС, а также измельчание зерна обеспечивают большее сопротивление распространению трещины. Однако следует отметить, что в этом случае речь идет о некотором понижении температуры вязкохрупкого перехода за счет создания благоприятной структуры, а не о подлинном повышении низкотемпературной пластичности материала, как это наблюдается при глубокой очистке от примесей внедрения [97].  [c.298]

Радиусы закругления рабочих кромок матрицы оказывают влияние на усилие гибки и на качество изгибаемых деталей. Чем меньше радиусы закругления матрицы, тем больше усилие гибки, ввиду уменьшения, с одной стороны, плеча гибки, а с другой стороны, вследствие большого сопротивления скольжению изгибае-мого металла по матрице. При малых радиусах закругления матрицы могут появляться некоторые вмятины, задиры и другие де-  [c.144]

В калибрующемся пояске пластическая деформация не происходит,, металл находится в упругом состоянии и удельное давление на стенки матрицы не может быть больше сопротивления деформации От. Поэтому максимальное значение сил трения, оказывающих сопротивление движению металла через калибрующий поясок, определяется уравнением Ti =f i0f ieDh .  [c.316]

При высадке головок слож юй формы из стали с высоким пределом прочности (о ) и текучести (о/-) или при высадке изделий, у которых часть заготовки должна быть высажена в матрице, необходимо уменьшить высоту конуса в пуансоне для уменьшения части заготовки, не имеющей опоры во время удара. Если уменьшение высоты конуса в этом случае не предусмотрено, то при первом ударе действию конического пуансона будет оказано большое сопротивление сзади конуса, что вызовет нарушение течения металла и изгиб свободной части заготовки.  [c.77]


Прошивные и протяжные пуансоны имеют меньшие размеры, чем молотовые штампы. Более крупные по размерам матрицы и штампы должны иметь высокую прочность главным образом в поверхностных слоях. Кроме тото. пуансоны и матрицы не испытывают значительных ударных нагрузок. Стали группы 46 могут иметь поэтому меньшую прокаливаемость и ударную вязкость, чем стали для молотовых штампов, но должны обладать большим сопротивлением термической усталости и большей прочностью, так как штампы горячей высадки и прессования более длительное время находятся в соприкосновении с деформируемым металлом.  [c.797]

На практике при большом числе активных элементов определение матрицы входных сопротивлений обычно производится экспериментально поочередным подключением источников к каждому из входов антенны при размыкании остальных входов и измерением возникающих при этом напряжений на всех входах. Если же чисто активных элементов невелико, матрица входных сопротивлений может быть найдена расчетным путем Наиболее удобным для расчетов является метод, пзтоженный в 6 7, поскольку при этом методе входной ток определяется только первым членом ряда (6.56), представляющего ток в каждом вибраторе  [c.124]

Пористые высокогеплопроводные металлы используются также и при изготовлении теплообменников сосредоточенного теплообмена (дискретного типа) для получения сверхнизких температур. Предельно развитая поверхность теплообмена пористой структуры позволяет уменьшить граничное термическое сопротивление Калицы, вызывающее температурный скачок на границе раздела жидкость - твердое тело, через которую передается теплота. Такой теплообменник представляет собой блок, содержащий две камеры, заполненные проницаемым высокотеплопроводным материалом с большой удельной поверхностью Обьпшо и пористая матрица и блок выполняются из меди. При растворении Не в Не на пористой насадке в одной из камер температура получаемой смеси может понизиться до 0,011 К. За счет этого происходит охлаждение всего блока и протекающего через другую камеру потока Не .  [c.17]

Основные результаты расчетов для сравниваемых вариантов приведены на рис. 5.18. Из приведенных данных следует, что канал с пористой вставкой отличается высокой эффективностью теплообмена tjj. В результате этого поток внутри проницаемой матриць нагревается много больше, чем в гладком канале при одинаковых температурах их стенок. Это приводит к существенному (более чем на порядок) снижению расхода охладителя. В конечном итоге высокое г1 ранлическое сопротивление проницаемой вставки в значительной мере компенсируется снижением расхода охладителя, так что затраты мощности на прокачку охладителя сквозь матрицу становятся соизмеримыми с аналогичной величиной для гладкого канала.  [c.126]

Общие замечания. Нарушение сплошности и несущей способности пространственно-армированных композиционных материалов при повышенных (выше 250 °С) температурах вследствие сравнительно низкой теплостойкости матрицы ограничивает температурный диапазон их применения. Решение задачи упрочнения матрицы в целях приближения ее прочности при повышенных температурах к высокому температурному сопротивлению углеродных волокон привело к появлению углеродной (или графитовой) матрицы и композиционных материалов на ее основе. Создание нового класса высокотемпературных материалов, получивших название углерод-углеродных композиционных материалов, описано в работе [109] там же приведена библиография по этим материалам. Первоначально со.зданные углерод-углеродные композиционные материалы основывались на двухнаправленном армировании. Они обладали лучшей прочностью в плоскостях армирования по сравнению с монолитным поликристаллическим графитом, но уступали по прочности, нормальной к плоскости армирования. Переход к пространственно-армированным материалам устраняет эту проблему [108, 114, 123]. Пространственное армирование резко повышает сопротивление этих материалов к действию нестационарных температурных напряжений и абляционную стойкость. Разработке и созданию пространственно-армированных материалов на основе углеродной матрицы уделяется большое внимание [106, 107].  [c.167]

Важной технической проблемой является увеличение срока службы технологической оснастки стеклоформирующих машин. В частности, к матрицам и пуансонам пресс-форм предъявляются повышенные требования по коррозионной стойкости, жаростойкости, а также по сопротивлению износу и механической прочности. Поскольку разрушение в подавляющем большинстве случаев начинается с поверхности, то для практического решения вопроса достаточно защитить лишь ее. Это можно осуществить с помощью силицидных покрытий. Однако известные методы их получения обладают рядом технологических недостатков, таких как большая трудоемкость и продолжительность процесса. При этом диффузионные слои пористы, хрупки, недостаточно тверды.  [c.194]

Допустимая степень взаимодействия компонентов в системах третьего класса зависит от многих других характеристик композита. Одна из важнейших характеристик — сопротивление распространению каждого конца трещины в реакционной зоне, поскольку оно определяет величину раскрытия трещины, а следовательно, и создаваемую трещинами концентрацию напряжений. Согласно всем имеющимся данным, допустимая длина трещины в системе титан — бор увеличивается с ростом предела упругости титановой матрицы. Однако если волокно не абсолютно упруго, а обладает определенной пластичностью, то критическая длина трещины может быть много больше. Значит, много больше может быть и толщина реакционной зоны. Соответствующий пример, относящийся к системе псевдопервого класса, имеется в работе Джонса [23], который исследовал композиты алюминиевый сплав 2024 — нержавеющая сталь. Хотя на большинстве образцов взаимодействия не наблюдалось, в нескольких случаях на малоугловом шлифе была обнаружена третья фаза вокруг волокон. Один из таких образцов, где хорошо видна образующаяся при реакции фаза, изображен на рис. 5. Фазу пересекают многочисленные, регулярно располо-  [c.22]

Можно ожидать, что прочность поверхности раздела особенно чувствительна к испытаниям при циклическом нагружении. Соответствующих данных мало, однако они, несомненно, свидетельствуют о высокой прочности связи. При усталостном разрушении пластинчатого композита А1 — AlaNi [72] одна или несколько трещин распространяются по зонам скольжения в матрице н значительного расслаивания не происходит. Аналогичным образом протекает усталостное разрушение пластинчатого композита Ni — NigNb, существенно отличающегося в других отношениях [37]. В обоих случаях время до разрушения при высоких напряжениях и малом числе циклов определяется сопротивлением разрушению армирующей фазы, а время до разрушения при малых напряжениях и большом числе циклов — распространением усталостной трещины в матрице. Ни в том, ни в другом случае расслаивание не является определяющим механизмом.  [c.259]

При меньших размерах частиц или расстояний между ними прочность пропорциональна величине, обратной корню квадратному из расстояния между частицами, и начало разрушения будет определяться процессом скольжения. При о > Пс > Ор трещины могут возникать и развиваться от частиц карбида, если эти частицы больше требуемых по Гриффитсу, а критические напряжения задаются уравнением (19). Трещины образуются в частицах цементита, но не развиваются в матрицу, если Ор > о > Ос. Однако, если частицы малы й не вызывают трещин, они тем не менее могут блокировать движение дислокаций и ограничивать предельное значение концентрации напряжений, тем самым повышая сопротивление сколу ферритной матрицы. Эти соображения были изложены в [45], и, хотя получена несколько отличная функциональная зависимость для разрушающих напряжений, основные выводы совпадают с выводами работы [47].  [c.82]

Сравнение результатов табл. V показывает, что композиты, изготовленные различными способами, обнаруживают различное поведение при динамическом разрушении. Композит (б) расслаивался примерно при той же скорости удара, что и неармированный алюминий, в то время как композит на основе диффузионной матрицы 6061 давал по крайней мере трехкратное увеличение скоростного порога расслаивания по сравнению с неармирован-ным алюминием. Причина этого заключается, вероятно, в различной геометрической упаковке волокон в этих двух композитах, большой площади контакта между нитями и наличием слабых поверхностей между соседними лентами композита (б). С другой стороны, большие поры в диффузионном композите, по-видимому, способствуют сопротивлению расслаивания тем, что создают дополнительную геометрическую дисперсию импульса.  [c.325]

Структура нелегированного и низколегированного белого чугуна состоит из перлитной матрицы и карбидов типа РезС или (Fe, Сг)зС. Такой чугун имеет высокую твердость, не поддается при обычных режимах механической обработке и обладает повышенной хрупкостью. Износостойкость чугуна доэвтектического состава (2,8—3,5% С) лишь на 50—80% выше по сравнению с углеродистыми сталями. Большая склонность белого чугуна и отдельных его структурных составляющих (особенно цементита) к хрупкому разрушению часто является причиной снижения сопротивления абразивному изнашиванию в условиях работы с ударом.  [c.50]


Определитель квадратной матрицы в (17.191) обращается в нуль при еовпадении величины ш с любой из к еобственных частот колебаний со/ (I = 1,2,. .., к)—возникает резонанс. (При наличии сопротивления имеют место максимумы в величине динамического коэффициента в окрестности значений аи/а, близких к единице). Формулы динамических коэффициентов для системы с двумя степенями свободы показаны в разделе 5 настоящего параграфа в примере 17.29. В случае систем с большим числом степеней свободы структура формул аналогична.  [c.144]


Смотреть страницы где упоминается термин Матрица большая сопротивлени : [c.129]    [c.332]    [c.146]    [c.17]    [c.255]    [c.92]    [c.169]    [c.29]    [c.118]    [c.78]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.472 , c.473 ]



ПОИСК



Большая матрица сопротивлений

Большая матрица сопротивлений

Матрица сопротивлений



© 2025 Mash-xxl.info Реклама на сайте