Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

141 —149 — Определение нелинейные — Математические методы

Наибольшее распространение в решении таких задач получили методы нелинейного математического программирования (методы поиска). Последнее название точно отражает существо методов, состоящее в организации движения изображающей точки, соответствующей варианту проекта, в пространстве параметров 1,. . ., х , в результате которого достигается приближение к экстремуму функции цели. Применение этих методов связано с многократным вычислением значений функций цели и ограничений, что для ЭМУ представляется достаточно объемной вычислительной задачей. Поэтому методы поиска получили повсеместной распространение прежде всего благодаря возможности применения вычислительной техники. Существуют общие особенности поисковых методов, дающие основание рассматривать их в качестве особой группы. Прежде всего методы поиска — это численные методы, позволяющие определять только некоторое приближение к экстремуму функции цели, т. е. решающие задачу с определенной степенью точности, достижение которой, как правило, представляет собой условие окончания поиска.  [c.150]


Более точно тепловые процессы в турбоустановках в целом и в отдельных ее элементах описываются рассматриваемыми ниже нелинейными математическими моделями, при реализации которых применяются численные математические методы и ЭВМ. Нелинейная модель используется при поверочных расчетах для определения  [c.21]

В предьщущих разделах бьши рассмотрены только первые два момента теории случайных функций — математическое ожидание и корреляционная функция. К сожалению, далеко не все прикладные задачи могут быть решены методами корреляционной теории - например, часто возникающая при анализе динамических систем задача об определении вероятности превышения ординаты случайной функции заданных значений. Эти задачи можно решить, если ограничиться процессами, обладающими некоторыми специальными свойствами, но представляющими практический интерес. В предьщущих параграфах методы корреляционной теории использовались для анализа систем с линейной связью между входом и выходом. В этом случае корреляционная теория дает возможность получить вероятностные характеристики решения дифференциальных уравнений, если известны вероятностные характеристики возмущений. Получить решение нелинейных уравнений методами корреляционной теории нельзя. Однако, если ограничиться процессами, обладающими специальными свойствами, можно получить решение и для нелинейных задач статистической динамики. К таким процессам относят марковские процессы, для полной характеристики которых достаточно знать только двумерные законы распределения.  [c.123]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]


Физико-математические модели многих процессов основаны на системе уравнений газовой динамики с учетом различных физических эффектов. Газодинамическое движение в них играет важную, а зачастую и определяющую роль. Уравнения газовой динамики сами по себе нелинейны. Общих методов решения газодинамических задач в настоящее время не существует. В то же время именно нелинейность порождает многие эффекты, с которыми приходится считаться в практически важных случаях. Как уже говорилось, для понимания сути явлений значительную помощь оказывают различного рода упрощенные модели, в том числе основанные на уравнениях, допускающих наличие автомодельных решений. Автомодельные решения могут играть существенную роль не только в анализе отдельных качественных сторон явлений, но и в исследованиях принципиального характера, позволяющих установить общие закономерности процессов на определенной стадии их развития. Так, теория точечного взрыва, основанная на автомодельных решениях задачи о сильном взрыве [52, 75], наряду с описанием явлений, наблюдаемых при взрыве со сверхвысокой энергией, используется для изучения свойств ударных волн при электрических разрядах и др. Примерами автомодельных решений, имеющих важное теоретическое и прикладное значение, могут служить решения асимптотического типа, описывающие явление кумуляции, т. е. процессы, в которых происходит неограничено сильная концентрация энергии. К ним относятся решения задачи о схождении ударной волны к центру или оси симметрии, задачи о движении газа под действием кратковременного удара и др. (см,, например, [8, 15, 46, 55, 77] и библиографию в этих работах). Прикладной интерес таких задач связан с существенной необходимостью для современной науки и техники реализации экстремальных состояний вещества — достижения высоких давлений, температур, плотностей, энергий.  [c.6]

Для определения теплофизических характеристик многослойных оболочек можно применять методы решения нелинейных инверсных задач теплопроводности [3]. Суш ественным является выбор исходной математической модели явления теплопроводности. Если модель принята для монолитной оболочки с постоянными X, v, то ошибки в температурных полях на нестационарных режимах, полученные при %э, Суэ недопустимы.  [c.144]

Система уравнений (19), (22) и (29) представляет собой математическую модель трехколесного ГДТ, работающего на переходных режимах. В отличие от известных, данная модель учитывает влияние ускорений насосного и турбинного колес, а также ускорения потока жидкости в относительном движении на величину углов выхода потока из лопастных колес. Как известно, эти углы входят в формулы для определения внешних и внутренних динамических характеристик ГДТ. Анализ уравнений (19), (22) и (29) показывает, что движение системы с ГДТ при работе на переходных режимах описывается совокупностью нелинейных неоднородных дифференциальных уравнений, точное решение которых невозможно. Приближенное решение этих уравнений целесообразно проводить. численным методом при помощи ЭЦВМ.  [c.25]

У несвободных стержневых систем опорные связи препятствуют появлению изгибных форм и для точного определения критических сил необходимо учитывать деформацию растяжения-сжатия в условиях продольно-поперечного и статического изгибов. Данная проблема сводится к аналитическому решению соответствующих нелинейных дифференциальных уравнений, что, в свою очередь, имеет трудности математического порядка. Поэтому обычно при определении критических сил несвободных систем продольными перемещениями (деформациями растяжения-сжатия) пренебрегают. Полученные при этом критические силы точными методами (методы сил, перемещений, начальных параметров, МГЭ) будут заниженными по отношению к действительному спектру. В этом состоят трудности расчета статическим методом несвободных систем на устойчивость. Однако подобные расчеты выполняются, так как критические силы будут иметь определенный запас устойчивости. Рассмотрим примеры определения критических сил несвободных рам.  [c.192]

Численное решение уравнения (3.71) удобно выполнять полу-обратным методом, вычисляя интенсивность s по заданным значениям й. На рис. 3.8 показаны зависимости математического ожидания й и дисперсии от интенсивности внешнего воздействия s при таких сочетаниях параметров нелинейности а и 6, которые допускают три положения равновесия в статическом случае. Как видно на графиках, приближенное решение задачи получается неоднозначным в определенной области изменения параметра интенсивности s.  [c.77]

Решений контактных задач, в которых равновесие оболочки описано геометрически или физически нелинейной теорией, в литературе значительно меньше. В основном это исследования Г. И. Львова [163—174]. В них предложена вариационная постановка контактных задач для тонкостенных гибких элементов конструкций на основе физических соотношений деформационной теории пластичности Ильюшина, теорий пластического течения и технических теорий нелинейной ползучести. С помощью математического аппарата вариационных неравенств дано определение обобщенного решения и задача сведена к проблеме минимизации функционала, заданного на множестве допустимых решений. Минимизация функционалов выполнена методом локальных вариаций, поперечное обжатие оболочки в зоне контакта не учтено.  [c.13]


Определение напряженно-деформированного состояния в окрестности нерегулярных точек связано для нелинейных задач с существенными математическими трудностями. Дж. Райсом [17] был предложен метод приближенного анализа задач о концентрации напряжений вблизи нерегулярных точек, основанный на введении некоторого криволинейного интеграла, имеющего одинаковые значения для всех путей интегрирования, окружающих сингулярную точку.  [c.69]

Работа [66] есть строгое математическое обоснование теории лучистого равновесия в среде конечной оптической толгцины — земной атмосфере, в отличие от более простого случая полубесконечной среды, изученного ранее астрофизиками. В весьма обгцем виде задача об определении вертикального профиля температу-эы лучистого равновесия сводится к регаению нелинейного интегрального уравнения. Сугцествование и единственность регаения этого уравнения доказывается методом последовательных приближений.  [c.777]

Наличие зазора между плитой сборного покрытия и основанием делает задачу о ее напряженном состоянии нелинейной и приводит к определенным математическим трудностям, которые можно преодолеть, используя численные методы. Поэтому для реализации математической модели был использован метод конечных элементов в перемещениях [29]. Нелинейность учитывалась при помощи метода последовательных нагружений, а односторонние связи между плитой и упругим основанием — путем суммирования перемещений на каждом шаге расчета в узлах системы, имеющих отрицательную реакцию основания.  [c.250]

Аналитические методы определения динамических характеристик объектов основаны на составлении их дифференциальных уравнений, которые базируются на использовании физических законов сохранения массы, энергии и количества движения. Таким путем удается получить нелинейное уравнение динамической характеристики, однако решить его аналитически не удается. Следующим этапом является линеаризация уравнения, т. е. переход к линейной математической модели объекта. Линеаризацию обычно проводят разложением нелинейных зависимостей в ряд Тейлора в приближении исходного стационарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива при малых отклонениях от исходного стационарного режима. Решение уравнения при ступенчатом или импульсном изменении входных величин позволяет получить переходные функции — кривые разгона или импульсные временные характеристики объекта. Рещение часто приводит к области изображений Лапласа или Фурье. В этом случае получаются передаточные функции или амплитудно-фазовые характеристики. Для выявления динамической характеристики котла аналитическим путем необходимо построение его математической модели.  [c.498]

Ряд постановок контактных задач с проскальзыванием и сцеплением касается качения тела по деформируемому основанию. В работах 16,17,39] подобное взаимодействие исследуется в квазистатическом приближении. Для этого используется вариационная постановка задачи, которая сводится к минимизации определенного функционала, зависящего от контактных напряжений, при нелинейных ограничениях в виде неравенств. Данная постановка позволяет определить расположение участков проскальзывания и сцепления, а также доказать теоремы существования и единственности решения. При численной реализации метода исходная вариационная задача заменяется конечномерной задачей математического программирования.  [c.249]

Подавляющая часть реальных задач оптимизации (в том числе задач оптимального проектирования) относится к нелинейному программированию. В отличие от линейного программирования для задачи НЛП нет универсальных методов решения, что объясняется многообразием математических моделей задач оптимизации, относящихся к НЛП, и их сложностью. Вместе с тем для определенных классов моделей, представляющих собой частные случаи НЛП, существуют общие подходы и эффективные алгоритмы решения входящих в эти классы задач.  [c.152]

Второе соображение относительно возможности существования фрактальных границ областей притяжения более тонкое и требует более изощренной математической интуиции. В гл. 1 и 5 было показано, что нелинейные системы, определенным образом растягивающие и складывающие некоторые области фазового пространства, порождая так называемое отображение типа подковы, в какой-то мере обладают чувствительностью к начальным данным и допускают множество субгармонических решений. Как было показано в гл. 5, свойства, присущие отображению типа подковы, возникают, когда у диссипативных нелинейных систем отображение Пуанкаре, индуцируемое потоком в фазовом пространстве, порождает гомоклинические точки. Холмс, используя метод Мельникова (см. уравнение (5.3.20)), предложил критерий (см. [57]). В случае вынужденного движения частицы в потенциале с двумя ямами этот критерий служит очень надежным признаком существования фрактальных границ областей притяжения даже в тех случаях, ког-  [c.255]

У несвободных стержневых систем опорные связи препятствуют появлению изгибных форм и для точного определения критических сил необходимо учитывать деформацию растя-жения-сжатия в условиях продольно-поперечного и статического изгибов. Данная проблема сводится к аналитическому решению соответствующих нелинейных дифференциальных уравнений, что, в свою очередь, имеет трудности математического порядка. Поэтому обычно при определении критических сил несвободных систем продольными перемещениями (деформациями растяжения-сжатия) пренебрегают. Полученные при этом критические силы точными методами (методы сил, перемещений, начальных параметров, МГЭ) будут заниженными по от-  [c.133]

Выше был рассмотрен метод линеаризации на примере достаточно простого уравнения динамики. При определении математических моделей элементов и систем автоматического регулирования в линейном приближении приходится проводить линеаризацию и более сложных уравнений, содержащих производные высокого порядка от выходных и входных величин по времени, а также нелинейные функции от таких производных. Несмотря на свою сложность, линеаризация уравнений динамики всегда осуществима описанным методом, если отклонения величин малы и нелинейные функции являются аналитическими, т. е. имеют конечные производные всех порядков по рассматриваемым переменным в окрестности, определяемой значениями величин при выбранном равновесном состоянии элемента или системы автоматического регулирования.  [c.32]

Большинство физических задач, с которыми сталкиваются сегодня инженеры, физики и специалисты в области прикладной математики, обнаруживает ряд существенных особенностей, которые не позволяют получать точные аналитические решения. Такими особенностями являются, например, нелинейности, переменные коэффициенты, границы сложной формы и нелинейные граничные условия на известных или, в некоторых случаях, неизвестных границах. Если даже точное решение некоторой задачи явно найдено, оно может оказаться бесполезным для математической и физической интерпретаций или численных расчетов. Примерами таких задач являются функции Бесселя большого порядка при больших значениях аргумента и двоякопериодические функции. Таким образом, для получения информации о решениях уравнений мы вынуждены прибегнуть к аппроксимациям, численным решениям или к сочетанию этих двух методов. Среди приближенных методов прежде всего следует назвать асимптотические методы возмущений, которые и являются предметом этой книги. Согласно этим методикам, решение представляется несколькими первыми членами асимптотического разложения, число которых обычно не превышает двух. Разложения могут проводиться по большому или малому параметру, который естественно возникает в уравнениях или вводится искусственно для удобства. Такие разложения называются возмущениями по параметру. С другой стороны, разложения могут быть проведены по координатам для больших или малых значений в этом случае они называются возмущениями по координатам. Примеры разложений по параметру и координате и их существенные характеристики даны в 1.1 и 1.2. Для формализации понятий пределов, оценок погрешности в 1.3 введены определения символов порядка и другие обозначения. Параграф 1.4 содержит опреде ления асимптотического разложения, асимптотической последовательности и степенного ряда в 1.5 дается сравнение сходящегося и асимптотического рядов. Затем, в 1.6 определены равномерные и неравномерные асимптотические разложения. Краткая сводка операций над асимптотическими разложениями дана в 1.7.  [c.9]


Использование нелинейных математических моделей и методов математического моделирования а ЭВМ позволяет решить задачу оптимизации для реальных сложных схем турбоустановок с учетом технических ограничений типа неравенств. В то же время наличие ступеней проточной части турбины при определении места отборов пара приводит к дискретности переменных, что вызывает серьезные трудности в реализации поиска глобального оптимума даже на ЭВМ с высоким быстродействием. Поэтому при оптимизации сложных схем прибегают к идеализации проточной части, не рассматривая ее дискретности. Тем самым большинство дискретных оптимизируемых переменных становится непрерывным, и это появоляет применять наиболее эффективные градиентные методы направленного поиска.  [c.59]

После подробного изложения математических методов, иногда сопряженных с необходимостью производить довольно громоздкие вычисления, уместно перевести дух и кратко сформулировать наиболее существенные выводы, к которым приводят отдельные этапы алгоритма. Отправным пунктом наших теоретических построений были нелинейные уравнения с флуктуирующими силами. На первом этапе мы предполагали, что эти силы пренебрежимо малы. Затем мы исследовали поведение систем, содержаших флуктуирующие силы, вблизи критических точек. Оказалось, что в достаточно малой окрестности критической точки поведение системы определяется небольшим числом параметров порядка и принцип подчинения позволяет исключить все подчиненные переменные. Включение флуктуирующих сил не нарушает процедуру исключения переменных, и мы приходим к уравнениям для параметров порядка с флуктуирующими силами. Такие уравнения для параметров порядка могут быть типа уравнений Ланжевена—Ито или Стратоновича. Эти уравнения, вообще говоря, нелинейны, и вблизи критических точек нелинейность не становится пренебрежимо малой. С другой стороны, часто бывает достаточно учесть лишь главный член нелинейности. Наиболее изящный подход к решению такого рода задач состоит в преобразовании уравнений для параметра порядка типа уравнения Ланжевена—Ито или Стратоновича в уравнение Фоккера—Планка. За последние десятилетия эта программа была реализована на различных системах. Выяснилось, что во многих случаях, когда возникают пространственные структуры, принцип детального равновесия на уровне уравнений для параметров порядка обусловлен соотношениями симметрии. В подобных случаях удается оценить распределение вероятности, с которой реализуются отдельные конфигурации при определенных значениях параметров порядка и,-. В свою очередь это позволяет вычислить вероятность образования тех или иных пространственных структур и найти устойчивые конфигурации по минимуму V (и) в  [c.348]

Предложен и реализован в составе САПР подход к определению установившихся электромагнитных процессов, использующий метод конечных элементов для расчета распределения магнитного поля в поперечном сечении машин. Кроме того, разработаны цифровые модели явнополюсных машин классической конструкции, с гребенчатым ротором, неявнополюсных синхронных машин, индукторных машин с пульсирующим и постоянным потоком, машин с внешне- и внутризамк-нутым потоком и др. на основе инженерных методов расчета. Созданы проблемно-ориентированные пакеты программ Модель и Поле , включающие программы, соответствующие названным математическим моделям электрических машин, программные модули аналитической аппроксимации одно- и двумерных функций, набор программных средств численного решения нелинейных задач и графического отображения распределения магнитного поля.  [c.287]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Маркировка - распределение меток по позициям в сети Петри Маршрутизация транспортных средств - задача определения маршрутов движения транспортных средств для выполнения заказов на перевозки грузов Математическое обеспечение ALS - методы и алгоритмы создания и использования моделей взаимодействия различных систем в ALS-технологиях Метод гармонического баланса - метод анализа нелинейных систем в частотной области, основанный на разложении неизвестного решения в ряд Фурье, его подстановкой в систему дифференциальных уравнений с группированием членов с одинаковыми частотами тригонометрических функций, в результате получаются системы нелинейных алгебраических уравнений, подлежащие решению Метод комбинирования эвристик - метод определения оптимальной последовательности эвристик для выполнения совокупности шагов в многошаговых алгоритмах синтеза проектных решений  [c.312]

Для рассматриваемой модели оказывается затруднительным построение формул суммирования погрешностей деталей из-за нелинейности исходного уравнения (11.219). Эта нелинейность возникает вследствие того, что текущий размер детали выражает суммарно и погрешность размеров, и погрешность формы, и не-прямолинёйность геометрического места центров поперечных сечений. Между тем существует практическая потребность в определении формул такого рода и, в частности, для расчета математического ожидания, дисперсии, среднего квадратического отклонения, практически предельного поля рассеивания и т. п. Для преодоления этого затруднения может быть использован метод статистических испытаний (Монте-Карло), который является весьма перспективным при моделировании, анализе и расчете точности нелинейных технологических процессов. Для упрощенного решения этой задачи можно ограничиться расчетом вероятностных характеристик двух более простых случайных функций, получаемых из исходной формулы (11.219) путем приравнивания нулю либо выражения Wp os ( — -j-nip , либо г +  [c.438]

Нельзя считать окончательно завершенной и работу, связанную с представлением в математических моделях теплоэнергетических установок термодинамических и теплофизических свойств рабочих тел и теплоносителей. Наибольшее количество исследований, выполненных в этом направлении, относится к наиболее распространенному в теплоэнергетике рабочему телу и теплоносителю — воде (водяному пару) [1,2]. В настоящее время широко используются два метода определения свойств воды и водяного пара при выполнении расчетных исследований на ЭЦВМ 1) представление соответствуюш,их свойств в виде явных или неявных функций от одной, двух или нескольких переменных 2) линейная или нелинейная интерполяция по узловым точкам таблиц, введенным в память ЭЦВМ. Наибольшего внимания, по-видимому, заслуживает работа [20], содержа-гцая рекомендованную Международным комитетом по формуляциям для водяного пара систему уравнений, предназначенную для технических расчетов. Однако, во-первых, эти уравнения достаточно сложны и, во-вторых, не содержат явных выражений для определения некоторых часто употребляемых в теплоэнергетических расчетах параметров. Оба эти обстоятельства приводят к суш ественным затратам машинного времени при использовании указанных уравнений. Второй метод определения свойств воды и водяного пара требует меньшего времени расчета на ЭЦВМ, но исходная информация по нему занимает больший объем запоминающего устройства ЭЦВМ. Таким образом, еш е предстоит большая работа по определению целесообразных областей применения каждого из указанных методов в зависимости от требуемой точности вычислений значений параметров, области их определения, характеристик используемой ЭЦВМ и т. д. Этот вывод в еще большей мере справедлив по отношению к новым рабочим телам и теплоносителям, широкое применение которых намечается на атомных электростанциях, в парогазовых и других комбинированных теплоэнергетических установках.  [c.10]

Сравнение расчетных и экспериментальных данных показывает их определенное совпадение. Однако построение математической модели, включающей только исходные факторы, при описании нелинейных объектов может не дать удовлетворительного результата. Потому была поставлена задача построения модели путем обработки экспериментальных данных методом гибкой (управляемой) регрессии. В катестве базовых функций приняты многомерные полиномы второго порядка собственно исходный фактор, его квадрат или квадратичная функция, а также произведения факторов называются регрессорами. Регрессоры, коррелированные между собой при х, - > 0,985, были устранены-  [c.248]


Во-вторых, прямой метод Ляпунова, основанный на применении квадратичной V-функции, относится к точным, математически обосноваиньгм методам определения области устойчивости нелинейных систем [8].  [c.531]

Аналитические методы определения характеристик объектов регулирования основаны на составлении их дифференциальных уравнений. Составление дифференциальных уравнений базируется на использовании основных физических законов сохранении массы, энергии и количества движения. Как правило, таким путем удается получить нелинейное уравнение объекта, аналитическое решение которого в общем случае не может быть получено. Следующим шагом является линеаризация полученного уравнения, т. е. переход к линейной математической модели объекта. Линеаризация обычно проводится путем разложения нелинейных зависимостей в ряд Тейлора в окрестности исходного станционарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива лишь при малых отклонениях от исходного стационарного режима. Решение уравнений при ступенчатом или импульсном изменении входных величин позволяет получить соответственно переходные функции (кривые разгона) или импульсные временные характеристики объектов. Решение часто проводят в области изображений Лапласа или Фурье. В этом случае получают соответственно передаточные функции или амплитудно-фазовые характеристики.  [c.817]

Расчет тепловой схемы заключается в составлении и решении сложной системы линейных и нелинейных алгебраических уравнений, т. е. является одной из задач математического моделирования в энергетике. При этом значительная часть лараметров и показателей не выражается аналитическими зависимостями, а представляется в виде табличных данных. Некоторые величины задаются в виде исходных постоянных, но большая их часть является переменными, подлежащими определению в результате расчета. 1Большое число элементов схемы (десятки) и переменных величин (сотни) определяют высокий порядок системы уравнений. Методы расчета тепловой схемы при использовании ЭВМ могут отличаться от ручных методов ее расчета, хотя частично могут и совпадать.  [c.174]

О методах решения задачи. С математической точки зрения рассматриваемая задача сводится к изучению решений нелинейных дифференциал ,ных уравнении, которые в каждой из определенных частей фазового пространства являются линейными, однако имеют в каждой такой части различную аналитическую запись и даже различный порядок [см. (1) и (2) при F = N = О и уравнение (7)]. Аналитическое решение подобной задачи может быть выполнено точными методами — так называемым обратным методом [6], а также методами поэтапного интегрирования, припассовывания, точечных отображений Могут быть использованы и приближенные методы — гармонического баланса и прямого разделегшя движений (см. т. 2, гл. II). Помимо аналитических методов используют графические построе1шя, а также цифровые и аналоговые вычислительные машины.  [c.16]

Оптимальное (с точки зрения протекания процессов повреждения в равновесном режиме) проектирование требует математического описания закритического деформирования, которое не сводится лишь к аппроксимации диаграмм, имеющих ниспадаю1цие участки. Не потеряли актуальность вопросы обоснования континуальных моделей разупрочняющихся сред и определения области их применимости. Возникает ряд математических проблем, связанных, в первую очередь, с анализом устойчивости процесса деформирования, единственности решения краевой задачи и возможной сменой типа дифференциальных уравнений [224], а также необходимостью учета свойств нагружающей системы, разработкой определяющих соотношений (даже для изотропных материалов), развитием численных методов и созданием эффективных итерационных процедур решения такого рода нелинейных задач.  [c.27]

По публикациям А.Ф. Сидорова можно проследить процесс поиска адекватных форм изложения данного метода, который остался незавершенным. Исходным пунктом является обобщение на нелинейные уравнения характеристических разложений Куранта для решений задач примыкания. Непосредственными предшественниками здесь можно считать Р. Куранта, Г.Ф. Даффа, Д. Людвига, В.М. Бабича, А.А. Дородницына. Вдохновляющим импульсом были проблемы в области газовой динамики, поставленные Курантом и Дородницыным (в том числе задача аналитического описания тройной точки ударных волн, ножки Маха ). Развитый метод характеристиче ских рядов для гиперболических нелинейных уравнений позволил в дальнейшем решить ряд задач математической физики, не поддававшихся решению ранее. Затем были открыты логарифмические ряды. Было осознано, что характеристические разложения — частный случай конструкции рекуррентных рядов, которая требует наличия определенных свойств, формулируемых на языке, близком к языку дифференциальной алгебры. Эта конструкция  [c.9]

Нелинейное уравнение Шредингера (НУШ) (5.1.1) принадлежит к специальному классу уравнений, которые можно точно решить, испо зуя метод обратной задачи рассеяния (ОЗР). Этот метод был открыт Гарднером и др. [37]. Захаров и Шабат [34] использовали его для решения НУШ данный метод стал важным инструментом в математической физике [1-5]. Метод ОЗР по духу похож на метод преобразования Фурье, который обычно используют для решения нелинейных уравнений в частных производных. Этот подход состоит в определении подходящей задачи рассеяния, потенциал которой и есть искомое решение. Значение поля входного излучения (z = 0) используется для получения начальных данных рассеяния, динамика которых вдоль оси Z легко находится из решения линейной задачи рассеяния. Поскольку метод ОЗР в деталях изложен во многих книгах [1 -5], мы лишь кратко опишем, как он используется для решения уравнения (5.1.1).  [c.111]

Если при этом весовые коэффициенты в сумме равны единице, то каждый из них может трактоваться как процент влияния соответствующего частотного критерия в общем. Очевидно, изменение набора i будет приводить к изменению оптимума. Это можно истолковать как проявление неявной функциональной зависимости X = X (С), С Сх, g, С и при необходимости использовать эту зависимость в интересах повышения эффективности объемных оптимизационных расчетов, В последний период развиваются новые интересные подходы для решения многокритериальных задач, которые основаны на методах ма тематической теории принятия решений. Рассмотренные в этой главе задачи расчета и синтеза газовых лазеров можно с полной уверенностью отнести к многокритериальным задачам парамеяри-ческой оптимизации, причем в общем случае с нелинейным функ-ционалом. Для оптимизации характеристик газовых лазеров или поиска при заданных характеристиках оптимальных конструктивных решений в этих приборах, в отсутствии разработанных средств математического исследования такого рода задач, необ ходимо исходить из физических соображений. Эти предпосылки по существу заложены в этапы реализации основной структурной схемы разработки газовых лазеров с использованием ЭВМ, изложенной в п. 2.3.Уже на первом этапе (анализ конкретной рассматриваемой задачи) многокритериальная оптимизация характеристик газовых лазеров может быть сведена к однокритериальной. Таким примером может служить задача разработки газового лазера с заданными характеристиками излучения в дальней зоне или расчет характеристик молекулярного усилителя. Именно физические соображения определили основным объектом исследования в обратной задаче расчета газового лазера резонатор с зеркалами, имеющими переменные по апертуре коэффициенты отражения. Затем анализ технологических возможностей привел к основному критерию оптимизации этих зеркал —- минимальному числу колебаний в зависимости R (г). Такой физический подход к оптимизации на сегодняшний день является типичным в задачах квантовой электроники. Однако прикладные задачи уже в настоящее время требуют большого количества принципиально разных газовых лазеров, работающих в различных режимах генерации, спектральных диапазонах и с различными уровнями входной мощности. Не всегда физический подход может обеспечить необходимые упрощения, способные свести задачу к простейшим приемам оптимизации, которые не требуют исследований функционалов (см. выражения (2.155) и (2.156)). Оптимизация выходных характеристик и конструктивных элементов прибора с учетом тенденций, определенных в теории и эксперименте, может осуществляться подбором необходимых данных в небольшом интервале изменений управляемых переменных. Дальнейшее совершенствование оптимизационных задач с использованием ЭВМ, как основных в разработке и исследовании  [c.123]

Среди широкого спектра нелинейных оптических явлений наибольший интерес в приложении к проблеме зондирования вызвал низкопороговый лазерный пробой на твердых включениях дисперсной среды. Указанный эффект является технически реализуемым в реальной атмосфере на расстояниях в сотни метров от излучателей, в качестве которых могут применяться импульсные лазеры, например, на СО2, HF, DF, стекле с неодимом и эксиме-рах, снабженные системой фокусировки пучка. Дистанционный лазерный пробой сопровождается генерацией оптических спектров испускания, электрического и магнитного импульсов, а также широкополосного акустического излучения. Это может служить физической основой бесконтактных методов определения атомного состава и ряда метеорологических параметров пограничного слоя атмосферы по схеме источник — приемник, т. е. без решения математической обратной задачи.  [c.194]

Предлагаемая вниманию читателя 1снига профессора и декана факультета теоретической и прикладной механики Корнеллского университета Фрэнсиса Муна — заметное явление в довольно обширной литературе по стохастическим колебаниям. Небольшая по объему, она ориентирована в первую очередь на читателя, делающего первые шаги в понимании тех сложных режимов, которые возникают при определенных условиях в нелинейных системах различной природы и не связаны с действием на эти системы случайных шумов. Предъявляя весьма скромные требования к математической подготовке читателя, автор выстраивает основные идеи, понятия и методы нелинейной динамики стохастических систем в такой тщательно продуманной последовательности, которая позволяет начинающему легко войти в курс дела и активно овладеть новой для себя областью, глубоко прочувствовать ее универсальный характер. Излагая критерии хаоса, сопоставляя и сравнивая результаты физических и численных экспериментов, автор подводит читателя к выводу о фаницах применимости той или иной модели, неизменно подчеркивая физику описываемого явления.  [c.5]

Вместе с этим нелинейная теория оболочек может рассматриваться как широкое развитие классической задачи Плато, и в этом ее большое естественнонаучное значение. Действительно, задача Плато относится к поверхностям с вполне определенным законом деформирования плотность потенциальной энергии деформации пропорциональна изменению площади элемента. Между тем в теории оболочек рассматриваются поверхности, у которых плотность потенциальной энергии деформации есть некоторая скалярная функция тензора деформации, что в значительной степепи осложняет проблему, придавая ей вместе с этим и больший естественнонаучный интерес, и большое практическое значение. Имеется громадное количество работ, в которых исследуются конкретные задачи нелинейной теории оболочек. Однако нет ни одной задачи этой теории, когда бы ее решение можно было получить в сколь-нибудь замкнутой форме. Поэтому здесь используется широкий комплекс приближенных методов с применением ЭВМ. Это делает особо актуальным строгое математическое исследование рассматриваемого класса нелинейных задач. Отметим также, что практически интересные механические явления не позволяют для своего анализа использовать почти линейные постаповкп, они связаны с большими глубокими нелинейностями.  [c.6]


В заключении этой главы полезно было бы напомнить общее положение, лежащее в основе почти всей прикладной математики. Это положение гласит, что точное решение линеаризованных дифференциальных уравнений движения эквивалентно в то же время приближению, полученному из решений точных (нелинейных) уравнений, управляющих системой. Конечно, точного общего математического определения этого положения не существует, но данная процедура давно стала стандартной в прикладной математике. Действительно, его внешняя привлекательность усиливается ещё и теми огромными трудностями, с которыми неизбежно сталкиваются при использовании любого другого метода решения. На справедливость данного утверждения а posteriori указывает множество решенных таким способом задач. Тем не менее, с точки зрения логики, это положение не имеет строго математического обоснования .  [c.57]

В основе спектрального метода лежит стандартный математический аппарат, позволяющий приближенно решать дифференциальные уравнения в частных производных. Решение ищется в виде разложения по ряду базисных функций от пространственных переменных с конечным числом членов ряда п. Эффективный способ применения спектральных методов к решению нелинейных дифференциальных уравнений, описывающих гидродинамические процессы, предложен Орсегом 30]. Преимуществом спектрального метода является возможность точного удовлетворения граничных условий при правильном подборе базисных функций, впрочем, только для областей с простой геометрией. Кроме того, этот метод в определенных условиях позволяет получить более точное решение по сравнению с методом, основанным на интегрировании по контрольному объему. Однако применение спектрального метода к решению системы уравнений Навье—Стокса встречает значительные трудности. Число базисных функций п вычисляется как отношение наибольшего характерного геометрического масштаба поля течения к наименьшему. Например, в случае течения в ограниченной области пространства наибольший масштаб имеет порядок размеров этой области, а наименьший определяется толщиной вязкого слоя вблизи стенки. Для сложных пространственных задач и течения с большими числами Рейнольдса указанное отношение может быть достаточно велико. Очевидно, ошибка численного решения уменьшается с ростом числа базисных функций п. Приемлемая точность решения часто не может быть достигнута из-за непомерно возрастающего с ростом п объема вычислений. Кроме того, при применении спектрального метода ошибка решения носит глобальный характер (т.е. появление погрешности решения в какой-либо точке приводит к распространению ошибки на всю область независимых переменных). С увеличением степени нелинейности уравнений эффективность спектральных методов снижается. Поэтому спектральные методы используются в основном для исследования однородной или изотропной турбулентности или для расчета течения в областях простой формы.  [c.197]


Смотреть страницы где упоминается термин 141 —149 — Определение нелинейные — Математические методы : [c.350]    [c.273]    [c.4]    [c.234]    [c.64]    [c.5]    [c.31]    [c.263]   
Вибрации в технике Справочник Том 2 (1979) -- [ c.0 ]



ПОИСК



Методы нелинейного

Методы нелинейного математического



© 2025 Mash-xxl.info Реклама на сайте