ПОИСК Статьи Чертежи Таблицы Термическая обработка сварных конструкций из "Сварные конструкции паровых и газовых турбин " Наиболее совершенным методом местного подогрева является индукционный нагрев. Для проведения операции индукционного нагрева используются переносные многовитковые индукторы, питаемые либо непосредственно от трансформаторов промышленной частоты, либо от специальных высокочастотных генераторов [82]. Индукционный нагрев может применяться также и для целей местной и обш,ей термической обработки сварных конструкций. [c.88] Применение индукционного нагрева для целей подогрева и термической обработки сварных конструкций позволяет заметно улучшить условия работы сварщиков, так как энергия используется в данном случае лишь непосредственно на нагрев изделия и потери за счет тепловыделения в окружающее пространство сведены к минимуму. Создаются условия для точного выдерживания заданной температуры нагрева и обеспечивается ее контроль. При применении индукторов удается наиболее просто совместить операции подогрева и термической обработки изделия без промежуточного охлаждения сваренного узла. Метод индукционного нагрева может применяться для целей подогрева и термической обработки деталей из всех применяемых классов сталей. С помощью его можно обрабатывать как детали симметричного сечения (стыки трубопроводов, роторов), так и изделия сложной формы (цилиндры турбин, корпуса арматуры и т. п.). При этом удается обеспечить равномерность нагрева изделия, меняя соответствующим образом расположение индукционных проводов. [c.88] Отмеченные преимущества индукционного нагрева позволяют считать этот метод в настоящее время наиболее прогрессивным для целей местного подогрева и термической обработки сварных изделий паровых и газовых турбин. Он применяется при изготовлении сварных стыков трубопроводов, роторов, цилиндров и других деталей. Примеры использования метода индукционного нагрева приведены в главах, посвященных описанию соответствующих узлов турбоустановок. [c.88] Для крупногабаритных изделий типа тонкостенных внутренних цилиндров и экранов газовых турбин, цилиндров низкого давления паровых турбин и других подобных узлов применение подогрева при сварке значительно усложняет работу. В этих случаях стараются в качестве материала конструкции подбирать стали, малочувствительные к закалке при сварке (малоуглеродистые и аустенитные), и сварку производить без подогрева. При необходимости использования 12-процентных хромистых сталей для внутренних экранов газовых турбин выбирают обычно сталь марки 0X13, имеющую содержание углерода менее 0,12% и не закаливающуюся при сварке. Для выхлопных частей цилиндров газовых турбин, работающих при температурах 450—500°, также обычно выбирают сталь марки 12МХ, которую в малых толщинах можно сваривать без подогрева. [c.88] Термическая обработка сварных конструкций находит широкое применение в практике турбостроения. Ее использование определяется рядом факторов, к числу которых следует отнести высокие требования к точности конструкций турбоустановок и значительный объем применения в них легированных сталей. [c.88] Влияние остаточных сварочных напряжений на прочность конструкции рассмотрено в главе III. Там было показано, что в большинстве случаев необходимость термической обработки изделия для снятия напряжений возникает при больших толщинах и жесткости свариваемых элементов вследствие опасности появления реактивных напряжений, снижающих прочность, а также при опасности растрескивания конструкций. [c.89] Важнейшими факторами, определяющими степень влияния остаточных сварочных напряжений на прочность, являются также пластичность отдельных зон сварного соединения и наличие в них концентраторов напряжений, обусловленных резким изменением формы сечения. Поэтому термическая обработка должна назначаться в первую очередь для узлов сложной конфигурации, имеющих резкие изменения сечения и изготовленных из сталей, при сварке которых можно опасаться хрупких участков в шве или околошовной зоне. В этих случаях основным назначением термической обработки является повышение пластичности различных участков сварного соединения. [c.89] Другой причиной, определяющей необходимость снятия сварочных напряжений, является опасность деформации сварной конструкции в процессе механической обработки или эксплуатации. В связи с тем, что возможные деформации конструкции из-за перераспределения сварочных напряжений относительно малы, они должны учитываться лишь для конструкций повышенной точности. Для уменьшения величины деформаций изделия без снятия сварочных напряжений может также использоваться ступенчатый метод механической обработки (п. 2, глава III). Для конструкций, изготовленных из легированных закаливающихся сталей, имеется опасность их коробления в процессе работы из-за прохождения в течение длительного времени в околошовной зоне завершающей стадии мартенситного распада, сопровождающегося изменением объема (п. 2, глава III). [c.89] Эффект снятия сварочных напряжений при термической обработке обусловлен проявлением процесса релаксации при высоких температурах. Поэтому при первоначальном выборе режима термообработки для снятия напряжения могут быть использованы данные релаксационных испытаний свариваемых сталей. Величина начальных напряжений при релаксационных испытаниях должна выбираться близкой к величине исходных сварочных напряжений, т. е. быть на уровне предела текучести основного металла. [c.89] На фиг. 47 приведены данные о степени снятия остаточных напряжений в сварных дисках диаметром 250 мм из малоуглеродистой стали с содержанием 0,25 % углерода [83]. Полное снятие сварочных напряжений в указанных деталях в условиях обычной дли-Ш° тельности отпуска около 2—5 час. может 700° быть обеспечено лишь при температуре выше 600°. При более низких температурах эффективного снижения напряжений не происходит вне зависимости от длительности отпуска. Отпуск при 300° приводит к снижению лишь 42% от исходного уровня напряжений. [c.90] На фиг. 48 приведены результаты исследований Л. А. Гликмана и В. П. Тэхта [84] по определению режима термической обработки для снятия остаточных напряжений в деталях из аустенитной стали 1Х18Н9Т. Исследования проводились на дисках диаметром 170 мм, в которых методом закалки в воде создавались остаточные напряжения. В отличие от перлитных сталей в данном случае полное снятие остаточных напряжений наступает лишь при 800°. [c.90] Термическая обработка сварных конструкций из легированных сталей, кроме снятия напряжений, имеет своей основной задачей, как было указано выше, улучшение свойств сварного соединения — устранение хрупких закаленных прослоек в шве и околошовной зоне и обеспечение его большей однородности. [c.91] В соответствии с имеющимся опытом изготовления сварных конструкций из различных сталей могут быть сделаны определенные обш,ие рекомендации о режимах их термообработки. Для малоуглеродистой стали выбор режима термической обработки определяется в первую очередь требованием снятия остаточных напряжений и поэтому температура отпуска составляет 650°. Для большинства сварных конструкций из этой стали при толш,ине свариваемых элементов до 35 мм правилами Госгортехнадзора [47] разрешено отпуск не производить. [c.91] При использовании хромомолибденованадиевых или хромистых нержавеющих сталей термическая обработка сварных конструкций является обязательной в связи с неизбежностью образования в исходном состоянии после сварки в шве и околошовной зоне хрупких закаленных структур. В связи с большей термической устойчивостью мартенсита в этих сталях температура отпуска должна быть повышена до 700—760°. [c.91] В ряде случаев представляется целесообразным использовать для сварных изделий из перлитных и хромистых сталей режим полной термической обработки закалку с последующим отпуском. При этом обеспечивается наиболее высокая однородность сварного соединения. Данный вид термической обработки может применяться для отливок, подвергаемых крупным заваркам в целях ремонта. На сварку отливка поступает в отожженном состоянии, а после сварки деталь проходит полную термообработку по режиму для основного металла. [c.92] Для массивных сварных конструкций из перлитных сталей повышенной жесткости, требующих подогрева при сварке, в ряде случаев необходимым является проведение операции термической обработки изделия непосредственно после сварки, без промежуточного охлаждения изделия перед термической обработкой. Необходимость соблюдения этого условия определяется опасностью появления трещин в закаленных зонах сварного соединения, образующихся при охлаждении до 50—200° изделия, сваренного с подогревом. Проведение немедленной термической обработки без охлаждения изделия после сварки позволяет устранить закаленные зоны и, следовательно, уменьшить опасность трещинообразования. Для сварных конструкций из хромистых жаропрочных сталей большой жесткости при толщине деталей, свариваемых с подогревом в 300—400°, свыше 30—50 мм необходимо после сварки охладить изделие до 120—150°, после чего производить отпуск. [c.92] Следует отметить, что обеспечение условия немедленной термической обработки изделия заметно усложняет и удорожает производство, так как требует проведения сварочных работ в непосредственной близости от термических печей, которые в это время не могут быть загружены. Наиболее рациональным является в данном случае использование местного индукционного нагрева. [c.92] Рекомендуемая по условию снятия остаточных напряжений для сварных изделий из аустенитных сталей термообработка (стабилизация) при температурах 800—900° может приводить не к улучшению, а в ряде случаев к ухудшению свойств металла шва и околошовной зоны сварного соединения (п. 4, глава II). Поэтому оптимальным видом термической обработки для сварных соединений аустенитных сталей является аустенизация — закалка с температур 1050—1200° в зависимости от марки стали. Этот режим термической обработки принят в качестве основного для сварных стыков паропроводов и ряда других ответственных конструкций из аустенитных сталей. В случае необходимости снятия остаточных напряжений, созданных в процессе быстрого охлаждения при аустенизации, конструкция может дополнительно подвергаться стабилизации по режиму 800- 900° — 10 час. [c.92] Вернуться к основной статье