ПОИСК Статьи Чертежи Таблицы Обобщение на случай сложного напряженного состояния из "Прикладная механика твердого деформируемого тела Том 1 " Для обобщения моделей предыдущего параграфа на случай сложного напряженного состояния удобно исходить из геометрической интерпретации процесса нагружения. Выделим в исследуемом теле элемент в форме параллелепипеда настолько малого размера, что его напряженное состояние допустимо считать однородным. Отнесем этот элемент к осям х , лгз, (рис. 10.7) и обозначим компоненты напряжений, действующих по его граням, через Oij i, /=1, 2, 3). Так как тензор напряжения с компонентами 0,7 симметричен (ajy = ay,), то для характеристики напряженного состояния выделенного элемента достаточно задания шести величин ст,у. Сопоставим напряженному состоянию элемента точку с декартовыми координатами в шестимерном пространстве, которое будем называть пространством напряжений. Ненагруженному состоянию элемента отвечает в пространстве напряжений начало координат. Нагружение образца сопровождается изменением значений и, значит, в пространстве напряжений точка, изображающая напряженное состояние исследуемого элемента, вычерчивает некоторую траекторию —путь нагружения. При одноосном напряженном состоянии все 0 у, кроме одного, например, Сц, равны нулю. В этом случае путь нагружения совпадает с осью СТц. Появление пластической деформации согласно моделям предыдущего параграфа связано с достижением Оц значения характерного для данного материала. Таким образом, на оси Ои можно выделить такую содержащую начало координат область, внутри которой состояние материала при первоначальном нагружении упруго. На рис. 10.8 эта область обозначена Q ее границами являются точки с координатами 1 а,, что соответствует случаю равных пределов текучести при растяжении и сжатии. [c.729] Если тело идеально пластично, то точки, лежащие вне й, не могут быть реализованы, так как напряжения, большие ст,. [c.729] Границы текучести идеально пла- Рис. 10.9. Границы текучести упрочняю-стического тела при осевой деформации. щегося тела при осевой деформации. [c.730] Естественным обобщением описанной картины на случай сложного напряженного состояния является представление о том, что в пространстве напряжений существует такая область й, содержащая начало координат, что на всяком пути нагружения, расположенном целиком внутри Q, деформация элемента остается упругой. Если тело идеально пластично, то выход точки на границу 5 области Q означает переход тела в состояние текучести, деформация при этом становится неопределенной. Таким образом, граница S представляет собой геометрическое место пределов текучести при всевозможных путях нагружения. Для идеально пластичного тела точки вне Q реализуются. Переход точки с границы S внутрь области Q сопровождается изменением только упругой составляющей деформации, т. е. происходит разгрузка, хотя некоторые из компонентов напряжения 0,7 могут при этом возрастать. [c.730] Граница S области S2 называется поверхностью течения или нагружения. В случае идеально пластического тела эта поверхность фиксирована. Для упрочняющегося тела поверхность нагружения изменяется по мере накопления пластической деформации. В пространстве напряжений в каждый данный момент нагружения она отделяет область упругого деформирования от области деформирования пластического (рис. 10.11). При трансляционном упрочнении поверхность нагружения смещается поступательно как жесткое целое. Возможны и другие виды упрочнения, при которых меняется не только положение поверхности нагружения в пространстве напряжений, но и ее форма и размеры. [c.731] Вернуться к основной статье