ПОИСК Статьи Чертежи Таблицы КИНЕМАТИКА Перемещения твердых тел из "Классическая динамика " Здесь Aij (= Aji) неизвестны исключив их, мы получим в уравнениях (5.1), (5.4), (5.5), (5.6) грунну уравнений, достаточных для определения (xi, yt, Z ) (i = 1, 2,. . ., P) как функций t и начальных значений (5.3). Эти последние нужно выбрать так, чтобы удовлетворялись условия (5.4) и уравнения, полученные дифференцированием (5.4) по t. [c.26] Чтобы пояснить это утверждение, заметим, что (4.1) определяет систему прямоугольных декартовых координат только в пределах ортогональных преобразований (ср. 9). Приведенная выше аксиома требует инвариантности уравнений движения относительно таких ортогональных преобразований, при условии, что это — собственные преобразования (т. е. группа преобразований не включает отражений). Инвариантность относительно переноса начала координат означает однородность пространства, а инвариантность относительно вращения — его мзотротгкость. Инвариантность по отношению к отражению относительно плоскости (несобственное преобразование) означала бы эквивалентность винтов с правой и левой резьбой. [c.27] Чтобы узнать, каков самый общий тип системы сил, удовлетворяющей приведенной аксиоме, заметим, что рассматриваемое преобразование точно соответствует перемещению твердого тела. Таким образом, аксиома вы,пол-няется, если система сил .жестко связана с мгновенной конфигурацией частиц. Чтобы увидеть, что это означает, рассмотрим систему четырех частиц, например, на рис. 1. [c.27] Третий закон Ньютона совместим с аксиомой однородности и изотропности, но он ограничивает силы взаимодействия между частицами они должны быть направлены по линиям, соединяющим частицы и, таким образом, закон не позволяет охватить электродинамические взаимодействия, кроме простого притяжения и отталкивания Кулона. Однако электродинамические взаимодействия можно истолковать релятивистски в систематическом развитии ньютоновой динамики мы примем третий закон Ньютона, так как иначе мы не смогли бы доказать основные теоремы об импульсе и моменте импульса ( 44). [c.28] Переходим теперь к релятивистской динамике (РД) системы. Требование, чтобы интервал менаду близкими событиями имел форму (4.2), ограничивает класс допустимых систем координат х, у, z, t) теми системами, которые получаются из данной преобразованием Лоренца ( 106). Как в НД мы требовали выполнения аксиомы однородности и изотропности пространства, так в РД формулируем аналогичную аксиому для пространства — времени. [c.29] Для замкнутой или изолированной системы частиц аксиома однородности и изотропности пространства-времени имеет следующую формулировку уравнения, определяющие движение системы, должны быть инвариантны относительно собственного преобразования Лоренца ). [c.29] Записывая уравнения для W , мы используем события С, D (см. рис. 2) вместо событий А, В ш вносим соответствующие изменения в уравнения. [c.31] Подведем итоги. Для одной частицы в заданном поле силы, как в ньютоновой, так и в релятивистской динамике, необходимо решить систему из трех дифференциальных уравнений. Но для системы взаимодействующих частиц дифференциальные уравнения ньютоновой механики заменяются в теории относительности дифференциально-разностными уравнениями эти уравнения представляют столь значительные математические трудности, что только некоторые предельные случаи могут быть разрешены приближенными методами ). [c.32] Вернуться к основной статье