ПОИСК Статьи Чертежи Таблицы Задача трех тел из "Аналитическая динамика " Решение задачи двух тел, кратко изложенное в 5.4 и далее, представляет одно из самых больших достижений ньютоновой механики. В указанном выше смысле эту задачу можно считать полностью решенной, т. е. мы можем определить положения частиц в любой момент времени, если известны координаты этих частиц и их скорости в момент t = Q. Что же касается задачи трех тел, то ее нельзя считать решенной в этом смысле. Однако для многих частных случаев этой задачи, возникающих в астрономии, удается построить приближенное решение с весьма высокой степенью точности. Небесные тела приближенно можно считать имеюш ими сферическую форму со сферически симметричным распределением массы взаимное притяжение таких тел таково же, как у частиц, расположенных в их центрах. Если в качестве трех тел рассматриваются Солнце и две планеты, то основным упрощающим условием является то, что массы и m2 планет малы по сравнению с массой М Солнца, так что членами третьего порядка относительно mjM и m lM обычно можно пренебречь. (Например, масса Земли составляет менее чем 1/300 ООО массы Солнца.) Если же рассматривается движение Солнца (М), планеты (т) и ее спутника ( i), то отношения тп1М и [i/M всегда малы и, кроме того, [i/m мало, хотя порядок малости последнего отношения и отличается от порядка малости ml М. (Например, масса Луны составляет около 1/80 массы Земли.) Другое обстоятельство, облегчающее построение приближенных решений, заключается в том, что эксцентриситет планетных орбит, как правило, весьма мал (для орбиты Земли он составляет приблизительно 1/60). [c.562] В предыдущих главах мы пробовали применить два подхода к решению задачи трех тел. В 17.10 рассматривалось движение планеты в поле двух притягивающих центров. Если считать, что это движение происходит в неподвижной плоскости, проходящей через притягивающие центры, то можно, как мы видели, дать исчерпывающую классификацию траекторий. Более того, можно найти уравнения траекторий, выразив их через эллиптические функции. Трудности, с которыми мы сталкиваемся в этой сравнительно простой задаче, дают представление о сложности проблемы в общем случае. В 25.3 мы рассматривали вариации эллиптических элементов. При этом сначала изучалось движение одной планеты относительно Солнца, а затем рассматривались те возмущения, которые обусловлены наличием второй планеты. Второй этап в этих рассуждениях не носил характера самостоятельной задачи возмущенное движение рассматривалось как непрерывное видоизменение исходного эллиптического движения. Этот метод эффективен, поскольку массы планет весьма малы по сравнению с массой Солнца. [c.562] Вернуться к основной статье