ПОИСК Статьи Чертежи Таблицы Ускорения точек тела, имеющего одну неподвижную точку из "Курс теоретической механики " Введенный нами вектор ю направлен по мгновенной осн вр щення. [c.192] Мгновенную ось вращения можно определить и в том случае, когда известна одна точка тела, скорость которой в данный момент времс55и равна нулю. Соединяя эту точку с неподвижной точкой тела, найдем мгновенную ось вращения. [c.193] Ось ОР называют осью конечного вращения, а угол АРАг = в называется углом конечного вращени . Положение оси ОР зависит от начального и конечного положений тела. [c.194] Зафиксируем начальный момент времени I и рассмотрим блнзгшй к нему момент времени А/. Сравнивая положение тела в момент I с его положением в момент i -1- Дг. мы всегда можем найти ось конечного вращения. Если теперь промежуток времеии А/ устремить к кулю, то ось конечного вращения будет менять положение, стремясь к своему предельному положению. [c.194] Предельное положение оси конечного вращения прн А - О называется мгновенной осью вращения для момента времеии /. [c.194] Так как движение шестерни / происходит беэ скольження, то скорость ее точкн - D рлзна нулю. Неподвижной точкой является точка О пересечения осей ОА и ОС шестерен. [c.195] Введем прежде всего понятие углового ускорения. Угловым уск рением называется производная углтой скорости по времени, т. [c.196] Из определения видно, что вектор углового ускорения можно ра сматривать, как скорость конца вектора ю (рнс. 12.8). Угловое уск рение Е направлено по касательной к годографу вектора углово скорости (рис. 12.8), поэтому его направление может быть каки угодно в зависимости от закона изменения вектора угловой скор ти. Заметим попутно, что годограф вектора угловой скорости кривая, лежащая иа неподвижном аксоиде (рис. 12.8). [c.196] Прежде всего необходимо определить величину и направление угловой скОроспц в углового ускорения катка ВС. [c.197] Вернуться к основной статье