ПОИСК Статьи Чертежи Таблицы Экспериментальные методы определения температуры из "Основы формообразования резанием лезвийными инструментами " К способам измерения температуры процесса резания относятся калориметрический метод, метод термопар, применение волоконно-оптических термопреобразователей и термопреобразователей сопротивления, использование термоиндикаторов, а также бесконтактные способы измерения температуры. При этом может измеряться средняя температура, локальная температура, определяться закономерность распределения температуры на трущихся площадках инструмента или температурное поле в целом. Местом измерения может служить инструмент, заготовка, стружка или охлаждающая среда. [c.96] Примененный исторически первым калориметрический метод, осуществленный в приборе калориметре, позволил определить среднюю температуру нагрева зоны резания. При этом стружка срезалась в жидкой среде или в нее помещались нагретые элементы технологической системы (отдельно стружка, заготовка или инструмент). По изменению температуры жидкости был рассчитан тепловой баланс процесса (4.1) и было установлено, что почти вся работа резапия превращается в теплоту. [c.96] Метод термопар основан на эффекте Зеебека в замкнутой электрической цепи, составленной из двух последовательно соединенных разнородных проводников тока, места контакта которых (спаи) находятся при различной температуре, возникает термоЭДС, величина которой пропорциональна разнице температур спаев. В свою очередь, термопары могут быть естественные, искусственные и полуискусственные. [c.96] В естественной термопаре в качестве разнородных проводников используется обрабатываемый и инструментальный материалы (рис.4.2). В одноинструментной схеме (рис.4.2.а) заготовка и инструмент электрически изолируются от станка. Один конец термопары подсоединяется к инструменту, а другой - через скользящий контакт к заготовке. Это самый простой способ измерения, однако замыкание через скользящий контакт вносит погрешность вследствие нежелательного нагрева этой части цепи (возникает паразитная термоЭДС между заготовкой и контактным проводом). Схема с двумя резцами (рис.4.2.б), изготовленных из разнородных инструментальных материалов, исключает эту погрешность, но требует более сложной наладки. [c.96] С целью определения значения температуры резания термопары подвергаются тарированию (рис.4.3). Для этого в тигель помещается расплав легкоплавкого металла (сплав Вуда, олово, цинк и т.п.) и в него опускаются две термопары образцовая, шкала прибора которой показывает температуру расплава, и тарируемая, которая дает соответствующую величину термоЭДС. [c.96] По мере остывания расплава строится тарировочный график для определения температуры в процессе экспериментов. При тарировке необходимо соблюдать те же условия контакта, что и при резапии. [c.97] Полуискусственная представляет собой комбинацию двух изложенных выше способов измерения, когда один из проводников вводится внутрь тела (в инструмент или заготовку), а второй подсоединяется к контртелу. Для измерения распределения температуры на трущихся площадках инструмента применяют также бегущую (перерезаемую) термопару [22. [c.98] Работа термопреобразователей для измерения температуры основана на изменении свойств вещества датчика при пагреве. В волокоппо-оптических термопреобразователях меняются оптические характеристики световолокна, которые фиксируются с помощью свето- и фотодиодов. В термопреобразователях сопротивления в зависимости от материала датчика с увеличением температуры нагрева электрическое сопротивление либо увеличивается в термометрах сопротивления (Си, N1, Р1), либо уменьшается в терморезисторах (Ое, СиО, МпОг). [c.98] Термоипдикаторы при пагреве меняют свой цвет, коэффициент отражения и другие оптические характеристики поверхности. В отличие от рассмотренных выше датчиков температуры они дают информацию о температурном поле в виде формы изотерм. По принципу реакции на тепло различают термохимические индикаторы, индикаторы плавления, жидкокристаллические и люминесцентные термоиндикаторы. Они имеют вид порошка, краски, пасты, лака и наносятся на контролируемый объект. Контролирующими устройствами могут быть эталоны цвета, колориметры (не путать с калориметрами), спектрофотометры и цветная фото- и видеотехника. [c.98] К бесконтактным способам измерения температуры резания относятся микроструктурный и терморадиационный методы. При микроструктурном методе по микрошлифам проводят анализ изменения фазового и структурного состава материалов заготовки, стружки и инструмента, обусловленного нагревом. Терморадиационный способ основан на измерении инфракрасного излучения нагретого тела и реализуется путем применения пирометров (точечных и сканирующих) и тепловизоров (термографов). В последнем случае выдается полная информация о температурном теле. [c.98] Вернуться к основной статье