ПОИСК Статьи Чертежи Таблицы Безмоментная теория пластин из "математическая теория пластичности " Хотя для такой пластинки в отношении параметров М , и полностью перефразируются теоремы 5 гл. И, однако практическое значение имеет лишь кинематическая оценка. Статическая оценка в нетривиальных задачах не осуществима из-за неполноты системы уравнений статики. Проверить непревышение условия текучести (в моментах) в жестких областях затруднительно. [c.115] Рассмотрим в качестве примера задачу об изгибе заделанной по сторонам квадратной пластинки равномерно распределенной нагрузкой. [c.116] Здесь возможна следующая схема разрушения (рис. 36, а). Пластическая зо а занимает область внутри вписанной в пластинку окружности. Остающиеся уголки являются жесткими. Поскольку край пластической области можно считать заделанным, то при такой схеме задача сводится к расчету заделанной круглой пластинки, который нами уже был проделан как в отношении предельной нагрузки, так и в отношении поля скоростей перемеще-иий. Поскольку такое поле существует, то принятая схема является кинематически допустимой, а соответствующий ей результат является примером неполного решения (см. 5 гл. И), которое отличается от полного отсутствием проверки непревышаемости условия пластичности в жестких областях. [c.116] Вернуться к основной статье