ПОИСК Статьи Чертежи Таблицы Построение физической модели из "ANSYS в руках инженера " Рассмотрим более подробно основные этапы численного нсследования прочности конструкций построение физической модели, построение математической модели, метод нсследования математической модели и анализ полученных результатов. [c.12] Построение физической модели включает в себя идеализацию свойств конструкции и внешних воздействий. [c.12] В общем случае конструкция, изготовленная из реального материала, находящаяся под действием внешних нагрузок, может иметь много особенностей, включающих в себя несовершенство формы, несплошность и неоднородность свойств материала, особенности в характере внешнего нагружения и т. п. В практических расчетах учесть все имеющиеся особенности конструкции, материала и нагружения невозможно. Конечно, привлечение ЭВМ расширило возможности учета в прочностных расчетах некоторых из перечисленных выше особенностей, но необходимо понимать, что как бы ин были велики мощности современных ЭВМ, нх быстродействие и обьем памяти, но и они не безграничны. Поэтому, приступая к практическим расчетам, мы вынуждены подменять, реальные тела некоторыми идеализированными объектами— механическими моделями . В качестве примера кратко рассмотрим эволюцию модели одного из основных объектов механики — сплошной среды. В курсах теоретической механики вводится понятие материальной точки как некоторого идеализированного (несуществующего в природе) объекта, имеющего массу, но ие имеющего размеров. Подобная идеализация оказалась достаточной для решения целого ряда задач. Например, при изучении движения планет вокруг Солнца достаточно считать Солнце и движущиеся вокруг него планеты материальными точками, т. к. расстояние между планетами и Солнцем гораздо больше размеров самих небесных теп. [c.12] реальное твердое тело илн жидкость можно представить себе как бесконечную систему материальных точек, определенным образом взаимодействующих между собой. С точки зрения атомного строения вещества и существования сил межатомного взаимодействия каждой нз материальных точек свойственна определенная индивидуальность. Однако проследить за состоянием каждой из материальных точек совершенно невозможно, поэтому приходится вводить некоторые осреднеиные характеристики, описывающие взаимодействие между атомами, отка шись от рассмотрения каждого атома в отдельности (статистическая физика). Методы статистической физики хорошо развиты применительно к газам. Для описания поведения твердых тел сведения об их атомной структуре не нужны. Реальное твердое тело заменяется воображаемой (модельной) сплошной средой. Среда называется сплошной, если любой объем, выделенный нз нее, содержит вещество. Такое представление о сплошной среде противоречит представлению об атомном строении вещества, однако оно чрезвычайно упрощает математическое описание поведения твердых тел под действием приложенной нагрузки. [c.12] Еще одной идеализацией реального твердого тела является присвоение ему свойств однородности. Среда называется однородной, если свойства выделенных из нее малых объемов одинаковы. Естественно, здесь речь идет о тех свойствах, которые определяются посредством механического эксперимента. Однако известно, что обычный металл или сплав состоит из кристаллических зерен, ориентированных случайным образом. Очевидно, что свойства этих объемов могут быть различными, т. к. металл неоднороден в преде-лах зерна. Но наличие этих неоднородностей ие влияет иа поведение металла в изделии, поскольку размеры этих зерен малы по сравнению с размерами изделия, и подобный ме-таил рассматривается как однородная сплошная среда. [c.12] Существуют неоднородные материалы с размером неоднородности значительно большим, чем у металлов, например, бетон. Но и изделия из таких материалов имеют раз-меры, по сравнению с которыми размеры структурных элементов пренебрежимо малы. [c.12] Определенной идеализации подвергается также и понятие внешние силы . В механике предполагается, что сила полностью определена, если задан соответствующий вектор, при этом сила рассматривается как результат взаимодействия двух твердых тел. С й точки зрения ветор силы, действующей на поверхность тела, означает сосредоточенную силу, т. е. силу, приложенную в точке. Однако, в действительности, сосредоточенных сил не существует. [c.13] Идеализированное понятие о точечном контакте двух твердых тел неразрывно связано с идеализацией твердого тела как абсолютно жесткого. При контакте реальные твердые тела деформируются, образуя площадку контакта конечных размеров, по которой давление распределяется непрерывно и неравномерно. Однако у достаточно прочных материалов размеры площадки контакта значительно меньше остальных размеров конструкции, поэтому прн расчете напряженно-деформированного состояния (НДС) элементов конструкции вдали от площддки контакта ввод идеализированной сосредоточенной силы вполне оправдан. Но при расчете НДС вблизи этой площадки замена распределенного давления сосредоточенной силой приводит к значительным погрешностям. [c.13] Таким образом, физическая модель может быть наделена лишь частью свойств реальной конструкции, а поэтому— проще ее математическое описание От того, насколько удачно выбрана физическая модель конструкции, зависит, в конечном итоге, трудоемкость расчета и точность его результатов. Здесь многое зависит от опыта расчетчика, его понимания работы конструкции, умения выделить те характеристики, которые, в основном, и определяют ее работу. [c.13] Вернуться к основной статье