ПОИСК Статьи Чертежи Таблицы Уравнения для корреляционных функций поля скорости из "Статистическая гидромеханика Ч.2 Механика турбулентности " Перейдем теперь к выводу основных динамических уравнений для корреляционных функций изотропной турбулентности. За исключением 20 настоящей главы, мы всюду будем предполагать, что речь идет о турбулентности в несжимаемой жидкости, движение которой описывается уравнениями Навье — Стокса (1.6) (без внешних сил Xi) и уравнением неразрывности (1.5). Ограничимся пока случаем пространственных корреляционных функций, относящихся к определенному моменту времени t, и начнем с рассмотрения функций, содержащих лишь значения поля скорости (дс, )= и,(дс, t), и х, t), из(дс,.. ) . [c.106] Равенство (14.7) представляет собой основное динамическое уравнение, связывающее вторые и третьи моменты поля скорости однородной турбулентности. [c.110] Уравнение (14.9) было впервые выведено Карманом и Ховартом (1938) и явилось основой всех последующих исследований по теории изотропной турбулентности. [c.110] Поскольку уравнения неразрывности и Навье — Стокса выражают физические законы сохранения массы и импульса, ясно, что все следствия из этих уравнений, выведенные в настоящем пункте, также представляют собой следствия указанных физических законов. Почти сразу же после появления первых работ по теории изотропной турбулентности Прандтлем было замечено, что, например, соотношение Кармана (14.3) может быть получено из интегральной формы закона сохранения массы без перехода к дифференциальному уравнению (1.6) (см. Вигхардт (1941)). В дальнейшем в работах Маттиоли (1951) и Хассельмана (1958) было показано, что аналогичный вывод, использующий лишь интегральную форму законов сохранения массы и импульса, возможен также и для соотношений (14.4), (14.5) и (14.9). [c.111] Вернуться к основной статье