ПОИСК Статьи Чертежи Таблицы Системы, близкие к интегрируемым из "Регулярная и стохастическая динамика " Обратимся теперь к качественному описанию типичного случая таких гамильтоновых систем, которые можно рассматривать как возмущения интегрируемых систем. Мы будем называть такие системы близкими к интегрируемым. Рассмотрим сначала простой случай автономного гамильтониана с двумя степенями свободы, или, что эквивалентно, неавтономного (зависящего от времени) гамильтониана с одной степенью свободы. Как мы видели в п. 1.26, неавтономные системы можно свести к автономным путем увеличения числа степеней свободы на единицу. Отличительной чертой систем, близких к интегрируемым, является присутствие причудливо перемешанных друг с другом областей как регулярного, так и стохастического движения. При этом стохастические области отделены друг от друга областями с регулярными траекториями. Стохастические траектории естественно возникают в результате движения, задаваемого детерминированными уравнениями Гамильтона, которые не содержат никаких специальных стохастических сил. Мы проиллюстрируем это на двух примерах, широко обсуждавшихся в литературе модель Хенона—Хейлеса и ускорение Ферми. Для автономных систем с более чем двумя степенями свободы области стохастичности уже не разделяются регулярными траекториями, а образуют стохастическую паутину , что приводит к так называемой диффузии Арнольда, которая качественно описана в конце этого параграфа. [c.59] Вернуться к основной статье