ПОИСК Статьи Чертежи Таблицы Обратные задачи светорассеяния полидисперсными системами частиц. Теория и численные методы из "Атмосферная оптика Т.7 " Оптика атмосферы в значительной мере определяется рассеянием света на молекулах и частицах [27]. При решении задач теории рассеяния света аэрозолями принято считать, что в любом локальном объеме воздуха при нормальных условиях их можно представить как систему однородных сферических частиц различного размера. В связи с этим в пределах настоящей главы излагаются теория и численные методы решения обратных задач светорассеяния полидисперсными системами сферических частиц. Разумеется, указанная система частиц рассматривается не более как морфологическая модель (если акцентировать внимание на форме рассеивателей, играющих важную роль в подобных задачах) реальной дисперсной рассеивающей среды. Оптическое соответствие модели и среды требует надлежащей проверки, о чем подробно говорится в заключительном разделе главы. В основе аналитических построений излагаемой ниже теории лежит понятие оператора перехода, осуществляющего преобразование одного элемента матрицы полидисперсного рассеяния в другой. В результате для матрицы Мюллера, адекватно описывающей прямые задачи светорассеяния системами частиц, удается построить матрицу интегральных (матричных) операторов взаимного преобразования ее элементов. [c.14] Используя эти операторы, обратные задачи светорассеяния можно свести к решению систем интегральных уравнений, что иллюстрируется в главе на примере теории поляризационного зондирования атмосферы. Этот оптический метод технически реализуется с помощью поляризационных нефелометров и бистати-ческих схем зондирования. Поскольку операторы перехода, определенные на совокупности элементов матрицы Мюллера, играют существенную роль и в теории, и в практике обработки оптических измерений, в главе дается обстоятельный анализ их основных свойств. В частности, показана их компактность и непрерывность, возможность их представления в виде интегральных операторов, приведена структура регуляризованного аналога, что весьма важно в случаях их применения в схемах обработки экспериментальной информации. Кратко изложены основы их спектрального анализа. Во избежание формализма авторы используют известные аналогии между интегральными операторами и матрицами. [c.14] Вернуться к основной статье