ПОИСК Статьи Чертежи Таблицы Устойчивые и неустойчивые периодические решения из "Динамика твёрдого тела " Устойчивые и неустойчивые периодические решения уравнений Эйлера-Пуассона для случая Горячева-Чаплыгина располагаются на бифуркационной диаграмме на ветвях III и II соответственно (см. рис. 46, 53-56). Численные исследования показывают, что движения полной системы в абсолютном пространстве, соответствующие этим решениями, также периодические при любых значениях энергии (см. рис. 55, 56). Этот факт ранее, по-видимому, не отмечался в литературе и отражает специфику динамики твердого тела на нулевой постоянной площадей (М, 7) = О (ср. с решениями Делоне для случая Ковалевской, 4 п. 3). Вместо формального доказательства мы приводим серию рисунков, наглядно подтверждающих это утверждение. На них представлены траектории системы как на сфере Пуассона, так и траекторий апексов в абсолютном пространстве, большинство из них достаточно сложны. [c.141] Общим выводом относительно случая Горячева-Чаплыгина является наблюдение, что при его анализе мы имеем дело с любопытными колебательными (вращательными) движениями в абсолютном пространстве, т. е. можно говорить о некотором сложном маятнике. Однако область применения таких колебаний пока не очень ясна. Отметим также сравнительную простоту движений волчка Горячева-Чаплыгина по сравнению с волчком Ковалевской. Немногочисленные аналитические результаты, полученные при изучении случая Горячева-Чаплыгина, неспособны дать наглядное представление о движении. Компьютерное исследование движения, наоборот, обнаруживает замечательные его свойства, типичные также для родственных интегрируемых систем. [c.142] Вернуться к основной статье