Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
В этом параграфе исследуется асимптотика по параметру решений уравнения с быстрыми и медленными движениями при стремлении параметра к нулю. Здесь рассматриваются только такие системы, в которых особые точки уравнения быстрых движений теряют устойчивость с изменением медленной переменной в результате обращения в нуль одного (и только одного) из собственных значений линеаризации. Другими словами, уравнение быстрых движений при любом значении медленной переменной имеет не более чем одномерное центральное многообразие. Медленная поверхность в этом случае распадается на устойчивую и неустойчивую части, разделенные точками срыва — критическими точками проектирования медленной поверхности на пространство медленных переменных вдоль пространства быстрых. Такие уравнения назовем уравнениями типа 1 в знак одномерности центральных многообразий.

ПОИСК



Асимптотика релаксационных колебаний

из "Теория бифуркаций "

В этом параграфе исследуется асимптотика по параметру решений уравнения с быстрыми и медленными движениями при стремлении параметра к нулю. Здесь рассматриваются только такие системы, в которых особые точки уравнения быстрых движений теряют устойчивость с изменением медленной переменной в результате обращения в нуль одного (и только одного) из собственных значений линеаризации. Другими словами, уравнение быстрых движений при любом значении медленной переменной имеет не более чем одномерное центральное многообразие. Медленная поверхность в этом случае распадается на устойчивую и неустойчивую части, разделенные точками срыва — критическими точками проектирования медленной поверхности на пространство медленных переменных вдоль пространства быстрых. Такие уравнения назовем уравнениями типа 1 в знак одномерности центральных многообразий. [c.183]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте