ПОИСК Статьи Чертежи Таблицы Средства повышения долговечности из "Основы конструирования " Основные факторы, лимитирующие долговечность и надежность машин, следующие поломки деталей износ трущихся поверхностей повреждения поверхностей в результате действия контактных напряжений, наклепа и коррозии пластические деформации деталей, вызываемые местным или общим переходом напряжений за предел текучести или (при повышенных температурах) ползучестью. [c.26] Прочность в большинстве случаев не является непреодолимым лимитом. В машинах общего назначения возможно полное устранение поломок. При располагаемом в настоящее время ассортименте машиностроительных материалов, при существующих методах изготовления, при современном состоянии науки о прочности в этом классе машин нет деталей, которым нельзя было бы придать практически неограниченную долговечность. [c.26] Многие факторы случайности можно свести к минимуму производственные (колебания механических характеристик материала, технологические дефекты) — тщательным контролем изделий, эксплуатационные (перегрузки, неправильное обраи ение с машиной) — чисто конструктивными мерами (введением систем защиты, предохранителей, блокировок). [c.27] В наихудшем положении находятся тепловые машины. Их долговечность зависит в первую очередь от стойкости деталей, работающих при высоких температурах (поршни, поршневые кольца и клапаны у двигателей внутреннего сгорания, лопатки роторов и направляющих аппаратов в паровых и газовых турбинах, камеры сгорания в газовых турбинах). [c.27] Прочность материалов резко снижается с увеличением температуры. Кроме того, при повышенных температурах возникает явление ползучести (пластическое течение материала под действием сравнительно небольших напряжений), приводящее к изменению первоначальных размеров детали, и, как следствие, к утрате ее работоспособности. [c.27] Практически долговечность в наибольшей степени определяется изнашиваемостью деталей. Постепенно развивающийся износ ведет к общему ухудшению показателей машины, снижению точности выполняемых ею операций, падению к. п. д., увеличению энергопотребления и снижению полезной отдачи. С течением времени износ может вступить в катастрофическую стадию. Прогрессирующее повреждение поверхностей вызывает поломки и аварии (разрушение подшипников качения, выкрашивание зубьев зубчатых колес и т. п.). [c.27] Основной вид износа в машинах — механический, который подразделяется на износ абразивный, износ при трении скольжения, износ при трении качения и контактный. Некоторые детали подвержены износу химическому (коррозионному), тепловому, кавитационно-эрозионному. Разнообразие видов износа и различие их физико-механической природы требуют дифференцированного изучения и специальных методов предотвращения изнашиваемости. [c.27] Главными способами повышения износостойкости при механическом износе являются увеличение твердости трущихся поверхностей, подбор материала трущихся пар, уменьшение удельного давления на поверхностях трения, повышение чистоты поверхностей и правильная смазка. [c.27] Влияние поверхностной твердости на износостойкость, по результатам опытов над износом поверхностей, подвергнутых действию абразива (корунд), показано на рис. 5. [c.27] За единицу принята изностойкость поверхности с НУ 500 (—НR 48). Как видно из диаграммы, повышение твердости на каждые 500 единиц НУ увеличивает износостойкость в 10 раз. [c.27] Условия опыта (абразивный износ) отличаются от реальных условий работы смазанных поверхностей в машиностроительных узлах. Тем не менее они дают представление об огромном влиянии твердости на износостойкость. [c.27] Современная технология располагает эффективными средствами повышения поверхностной твердости цементация и обработка т. в. ч. (ЯУ 500— 600), азотирование (НУ 800—1200), бериллизация (НУ 1000—1200), диффузионное хромирование (Я V 1200—1400), плазменное наплавление твердыми сплавами (НУ 1400—1600), борирование (НУ 1500—1800), бороциа-нирование (НУ 1800—2000). [c.28] Важное значение имеет правильное сочетание твердости парных поверхностей трения. При движении с малыми скоростями под высокими нагрузками целесообразно максимальное повышение твердости обеих поверхностей, а при движении с большими скоростями в присутствии смазки — сочетание твердой поверхности с мягкой, обладающей повышенными антифрикционными свойствами. [c.28] Эффективным способом увеличения износостойкости является уменьшение величины удельного давления в трущихся соединениях. Иногда этого можно достичь уменьшением величины нагрузок (рациональная раздача сил) или снижением степени цикличности и ударности нагрузок. Наиболее простой способ заключается в увеличении площади поверхностей трения, нередко достигаемом без существенного увеличения габаритов. [c.28] В качестве примера приведем случай направляющей металлорежущего станка, испытывающей нагрузку одностороннего действия (рис. 6, а). Изменение профиля направляющей (рис. 6, б) позволяет при тех же габаритах увеличить опорную поверхность и снизить удельное давление вдвое, с соответствующим повышением долговечности. Еще большей долговечностью обладают гребенчатые направляющие (рис. 6, в). В этом случае удельное давление уменьшено в 4 раза при увеличении габаритов только в 2 раза по сравнению с исходной конструкцией. [c.28] Во всех случаях, когда допускает конструкция, точечный контакт следует заменять линейным, линейный — поверхностным, трение скольжения — трением качения. [c.28] Особое направление заключается в компенсации износа, осуществляемой периодически или автоматически. К числу узлов с периодической компенсацией принадлежат подшипники скольжения с осевым или радиальным регулированием зазора (с коническими цапфами или посадочными поверхностями, с периодически подтягиваемыми вкладышами). Другие примеры периодической компенсации износа — осевая подтяжка подшипников качения (радиально-упорных или конических) и регулирование зазора в прямолинейных направляющих при помощи переставных клиньев и планок. [c.29] Более совершенны системы с автоматической компенсацией износа (самопрвтирающиеся конические пробковые краны, торцовые и манжетные уплотнения, узлы подшипников качения с постоянно поддерживаемым пружинным натягом, системы гидравлической компенсации зазоров в рычажных механизмах и т. д.). [c.29] Вернуться к основной статье